轴系校中不良会引发轴系受力不均及轴系振动,从而导致轴件磨损、零部件松动、轴杆断裂等问题,将考虑减轻轴系弯曲振动计入轴系校中优化进程,对提高轴系校中质量和运转性能具有重要意义。本文在常规轴系合理校中的基础上,综合运用奇异函数、传递矩阵法及雷诺方程,将各轴承处振动传递功率流作为优化目标之一计入了校中计算,并以某船舶推进轴系为例,利用Isight优化软件和Matlab组件联合编程仿真,对轴系各轴承位置进行了双向校中优化。研究结果表明,该方法能有效优化各目标函数,优化后推进轴系尾后轴承负荷降低、各轴承负荷分配更为合理,同时轴系的振动特性也有所改善,达到了更优的校中效果,验证了该方法的合理、有效性。
Poor quality of shafting alignment will cause shafting vibration and uneven distribution of bearing load, which likely to cause parts of shafting be worn or loose, shaft facture and so on. Thus taking shaft bending vibration into consideration in optimization progress of shafting alignment will be of great significance to the improvement of alignment quality and operation performance of shafting. Based on the usual shafting alignment, this paper synthesizes the singular fuction, transfer matrix mothod and Reynolds equation, and the expressions of vibration transmission power flow at each bearing are deduced. Then the tansmission power flow are taken as one of optimization targets into consideration in the progress of shafting alignment. Moreover, the paper takes the propulsion shafting of a ship as an example and uses Isight and Matlab module to simulate shaft system, the position of each bearing is optimized in two directions. The results show that the optimization mothod can optimizate the fuction of each target effectively, and the bearing load of rear bearing is reduced, the load distribution of each bearing is more reasonable after optimization, the vibration properties of shafting are also improved greatly, all the above validates the rationality and effectiveness of the optimization mothod in this paper.
2020,42(1): 140-145 收稿日期:2018-05-30
DOI:10.3404/j.issn.1672-7649.2020.01.028
分类号:U664.2
作者简介:王建午(1994-),男,硕士研究生,研究方向为舰船动力装置振动与噪声控制
参考文献:
[1] 周瑞平. 超大型船舶推进轴系校中理论研究[D]. 武汉:武汉理工大学, 2005. ZHOU Rui-ping. The theoretic studies on the proplusion shafting alignment of ultra-large vessels[D]. Wuhan:Wuhan University of Technology, 2005.
[2] 周瑞. 舰船推进轴系校中的多目标优化计算方法[J]. 中国舰船研究, 2013, 8(3):73-77 ZHOU Rui. A multi-object optimization method for the shafting alignment in ship propulsion systems[J]. Chinesen Journal of Ship Research, 2013, 8(3):73-77
[3] REEVES J D, VLAHOPOULOS N. Optimized alignment of a USCG polar class icebreaker wing shaft using a distributed bearing finite-element model[J]. Marine Technology, 1999, 36(4):238-247
[4] 魏颖春, 杨川. 基于有限元法的船舶艉轴承负荷优化[J]. 船海工程, 2011, 40(5):62-64 WEI Ying-chun, YANG Chuang. Load optimization of marine stern bearing on the finite element method[J]. Ship and Ocean Engineering, 2011, 40(5):62-64
[5] 陆金铭, 周海港, 顾卫俊, 等. 船舶轴系优化校中[J]. 船海工程, 2010, 39(3):51-54 LU Jin-ming, ZHOU Hai-gang, GUI Wei-jun. Optimization of the location of bearings in shaft line alignment[J]. Ship and Ocean Engineering, 2010, 39(3):51-54
[6] 杨俊, 王隽, 王刚伟. 船舶推进轴系校中对轴系振动影响分析[J]. 动力学与控制学报, 2016, 14(2):157-164 YANG Jun, WANG Juan, WANG Gang-wei. Analysison the effect of marine propulsion shafting alignment on its vibration[J]. Journal of Dynamics and Control, 2016, 14(2):157-164
[7] 方国强. 轴系校中参数与轴系振动特性相关性仿真研究[J]. 舰船科学技术, 2016, 38(1):67-71 FANG Guo-qiang. The correlation rules of typical hull shafting vibration characteristics with alignment parameters[J]. Ship Science and Technology, 2016, 38(1):67-71
[8] 刘学伟, 何其伟, 蒋竞超, 等. 考虑船舶轴系校中与弯曲振动的轴承优化布置[J]. 舰船科学技术, 2016, 38(7):44-48+53 LIU Xue-wei, HE Qi-wei, JIANG Jing-chao. Optimization of ship shaft bearings location considering shaft alignment and lateral vibration[J]. Ship Science and Technology, 2016, 38(7):44-48+53
[9] 冷坳坳. 舰船推进轴系校中技术研究[D]. 武汉:武汉理工大学, 2015.
[10] CB/Z 338-2005, 船舶推进轴系校中[S].
[11] 李宁, 王李管, 贾明涛. 基于层次分析法的矿井六大系统模糊综合评价[J]. 中南大学学报(自然科学版), 2015, 46(2):631-637