考虑裂纹尖端应力场常数项T应力对裂纹断裂特性的影响,对平均应变能密度准则进行修正,建立混合型裂纹扩展条件计算式。在此基础上,系统分析常数项T应力对I型、II型、I-II混合型裂纹断裂判据的影响。结果表明,常数项T应力降低了材料裂纹起裂阻力,且参数|Bα|越大裂纹断裂极限值越低,|Bα|相同时,正T应力要比负T应力更容易发生断裂。基于修正平均应变能密度准则,预测双轴疲劳载荷作用下平板表面I型裂纹扩展寿命。结果表明,考虑常数项T应力影响后的疲劳裂纹扩展寿命约为传统疲劳裂纹扩展寿命的49%。
The averaged strain energy density criterion is modified by considering the constant term T-stress. The crack onset propagation formulation of mixed mode I-II-III crack were then given. The mode I, mode II and mixed mode I-II crack onset propagation behavior were investigated thoroughly. The analysis results show that the crack onset propagation limit will be reduced by considering T-stress. The greater the parameter |Bα| is, the easier the fracture will take place. Fracture will more easily happen when the T-stress is positive at a given parameter |Bα|. The crack growth life of the plate surface mode I crack under longitudinal tensile load and lateral compressive load simultaneously were analyzed based on the traditional reference variable ΔKΙ and the proposed reference variable ΔKeq. The analysis results show that T-stress has a significant effect on mode I surface crack growth life, the crack growth life will be overestimated by neglecting the T-stress effect.
2020,42(2): 20-24 收稿日期:2019-06-24
DOI:10.3404/j.issn.1672-7649.2020.02.003
分类号:O346.1
作者简介:黄如旭(1987-),男,高级工程师,研究方向为船舶与海洋工程结构疲劳与断裂理论、实验及数值模拟
参考文献:
[1] ERDOGAN F, SIH GC. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963(85):519-25
[2] SIH GC. Mechanics of Fracture-Method of Analysis and Solution of Crack Problems[M]. NoordHoff Inf Publishers, 1973.
[3] LAZZARIN P, ZAMBARDI R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture, 2001, 112(3):275-298
[4] 赵艳华, 陈晋, 张华. T应力对I-II复合型裂纹扩展的影响[J]. 工程力学, 2010, 27(4):5-12
[5] 高文, 王生楠. T应力对线弹性材料脆性断裂的影响[J]. 西北工业大学学报, 2015, 33(6):928-935
[6] AYATOLLAHI MR, MOGHADDAM MR, BERTO F. T-stress effects on fatigue crack growth-Theory and experiment[J]. Engineering Fracture Mechanics, 2018, 187:103-114
[7] SMITH DJ, AYATOLLAHI MR, PAVIER MJ. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue Fracture Engineering Material Structure, 2001(24):137-150
[8] AYATOLLAHI MR, RAZAVI SMJ, MOGHADDAM MR, BERTO F. Model I fracture analysis of polymethylmetacrylate using modified energy-based models[J]. Physical Mesomechanics, 2015, 18(4):326-336
[9] MOGHADDAM MR, AYATOLLAHI MR, BERTO F. The application of strain energy density criterion to fatigue crack growth behavior of cracked components[J]. Theretical and Applied Fracture Mechanics, 2017
[10] 刘小妹, 卞永明, 梁拥成. 一种新的确定应力强度因子的数值方法[J]. 力学季刊, 2016, 37(1):149-153
[11] WILLIAMS ML. On the Stress Distribution at the Base of a Stationary Crack[J]. Journal of Applied Mechanics, 1957, 24:109-114
[12] MOGHADDAM MR, AYATOLLAHI MR, BERTO F. Mixed mode fracture analysis using generalized averaged strain energy criterion for linear elastic materials[J]. International Journal of Solids and Structures, 2017(120):137-145
[13] 黄如旭, 杨小龙, 陆波, 等. 三维裂纹前缘应力强度因子数值计算方法研究[J]. 舰船科学技术, 2019, 41(3):13-17