通过对NACA滑行楔形体进行数值仿真计算,验证多面体网格在滑行艇数值仿真计算上的精度,并尝试使用多面体网格改善滑行艇数值仿真计算中遇到的伪扩散问题。计算结果表明,基于多面体网格的滑行艇数值仿真计算的精度很高,能够满足工程需要;能够改善滑行艇仿真计算中遇到的伪扩散问题。本文进一步扩展了多面体网格在船舶与海洋工程领域的应用范围,并为滑行艇的数值仿真计算提供有益参考。
In order to test and verify the applicability of the polyhedral mesh for numerical simulations of planing hulls, polyhedral mesh was used to predict a NACA planing wedge’s drag and lift. Calculation results were compared with model tests results and numerical results from other mesh forms. Moreover, polyhedral mesh was used to try to solve false numerical diffusion problems which may be met in numerical simulations of planing hulls. Results prove that polyhedral mesh can offer precise and reliable results for planing hulls and of good for controlling false numerical diffusion problems.
2020,42(2): 33-37 收稿日期:2018-12-04
DOI:10.3404/j.issn.1672-7649.2020.02.006
分类号:U661.1
作者简介:李昆鹏(1987-),男,硕士研究生,工程师,研究方向为船艇装备技术
参考文献:
[1] BRIZZOLARA S, SERRA F. Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics[C]//2nd International Conference on Marine Research and Transportation. 2007:147-159.
[2] 王硕, 苏玉民, 庞永杰, 等. 高速滑行艇CFD精度研究[J]. 船舶力学, 2013, 17(10):1107-1114
[3] DIEDRICHS B. Aerodynamic calculations of crosswind stability of a high-speed train using control volumes of arbitrary polyhedral shape[J]. Bluff Bodies Aerodynamics & Applications, 2008(6):20-24
[4] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1):201-225
[5] 王志刚, 禚玉群, 陈昌和, 等. 四角切圆锅炉流场伪扩散效应网格的研究[J]. 中国电机工程学报, 2007, 27(5):22-28
[6] FRISK D, TEGEHALL L. Prediction of high-speed planing hull resistance and running attitude[D]. Chalmers University of Technology, 2015
[7] SPIEGEL M, REDEL T, ZHANG Y J, et al. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(1):9-22
[8] CHAMBLISS D B, BOYD G M. The planing characteristics of two V-shaped prismatic surfaces having angles of deadrise of 20° and 40°[R]. Langley Aeronautical Laboratory, NACA. Tech. Note 2876. Washington, 1953.
[9] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8):1598-1605
[10] 孙华伟, 马伟佳, 朱江波. 影响滑行艇阻力数值计算的网格因素研究[J]. 中国造船, 2015, 56(2):170-178