为了提高AUV航向控制系统的控制品质,研究基于模糊理论的参数自调整PID算法。该算法在AUV原控制器的基础上对控制器参数进行在线调整,使控制器具有了一定的自适应特性。分析模糊控制规则对控制效果的影响,提出一种基于非线性函数的尺度变换方法对模糊控制器输入数据进行处理,简化了模糊控制器输入数据的量化过程。通过湖上试验,验证了模糊PID控制算法的有效性。对比试验结果显示,改进后的算法在AUV航向控制中能够获得更好的控制效果。在大角度转向中,该控制算法的优越性明显,系统响应快,超调小,航向误差均方差小。
In order to improve the control quality of the AUV heading control system, a parameter self-adjusting PID algorithm based on fuzzy theory is studied., the algorithm adjusts the controller parameters online based on the original AUV controller so that the controller has some adaptive characteristics. The influence of fuzzy control rules for the control effect is analyzed., a scale transformation method based on nonlinear function is proposed to process the fuzzy controller input data, which simplifies the quantization process of the fuzzy controller input data. Finally, the effectiveness of the fuzzy PID control algorithm is verified by experiments on the lake., In the comparative experiment, the improved algorithm can obtain better control result in the AUV heading control. In the large angle steering, the superiority of the control algorithm is obvious: the system response is fast, overshoot is small, and the heading error is small.
2020,42(2): 108-114 收稿日期:2019-01-21
DOI:10.3404/j.issn.1672-7649.2020.02.021
分类号:TP242
基金项目:中科院战略性先导科技专项资助(XDA13030204)
作者简介:吕厚权(1989-),男,硕士研究生,研究领域为水下机器人自主回坞技术、控制方法
参考文献:
[1] Y. SATO, Ma ki, Toshihiro, Ku me, et al Path replanning method foran AUV in natural hydrothermal vent fields:toward 3D imaging of a hydrothermal chimney[J]. Marine Technology Society, 2014, 48(3):104-114
[2] CHOYEKH M K, NaOMI S, et al. Vertical water column survey in the gulf of mexico using autonomous underwater vehicle SOTAB-I[J]. Marine Technology Society Journal, 2015, 49(3):88-101
[3] 严浙平, 周佳加. 水下无人航行器控制技术[M]. 北京:国防工业出版社, 2015:153-154.
[4] 贾鹤鸣. 基于反步法的欠驱动UUV空间目标跟踪非线性控制方法研究[D]. 哈尔滨:哈尔滨工程大学. 2012. JIA H M. Study of spatial tracking nonlinear control of underactuated UUV based on backstepping[D]. Harbin:Harbin Engineering University. 2012.
[5] LEKKAS A, FOSSEN T I. A Quaternion-based LOS guidance scheme for path following of AUVs[J]. Ifac Proceedings Volumes, 2013, 46(33):245-250
[6] AGUIAR A P, PASCOAL A M. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents[C]//IEEE Conference on Decision & Control. IEEE, 2002.
[7] YANG R, CLEMENT B, et al. Robust heading control and its application to ciscrea underwater vehicle[C]//Oceans. IEEE, 2015.
[8] MASHHAD A M, MASHHADI S K M. H infinity robust controller comparison with PD like fuzzy logic controller for an AUV control[C]//Fuzzy & Intelligent Systems. IEEE, 2016.
[9] 姜春萌. 自主水下机器人智能控制与参数优化技术研究[D]. 哈尔滨:哈尔滨工程大学. 2018. JIANG C M. Research on AUV Intelligent Control and Parameter Optimization Technology[D]. Harbin Engineering University. 2018.
[10] HEALEY A J. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles[J]. IEEE J. Oceanic Eng, 1993, 18(3):327-339
[11] MARCO D B, HEALEY A J. Command, control, and navigation experimental results with the NPS ARIES AUV[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):466-476
[12] 孙增圻, 邓志东, 张再兴. 智能控制理论与技术[M]. 北京:清华大学出版社, 2011:17.
[13] 从爽. 智能控制系统及其应用[M]. 合肥:中国科学技术大学出版社, 2013:138-143.
[14] 徐德民, 严卫生. 鱼雷控制系统计算机辅助分析设计与仿真[M]. 西安:西北工业大学出版社, 2000:79-80.