以理清船、机、桨参数匹配对船舶推进系统动态特性的影响为目标,为后期系统优化改进提供理论依据,建立了柴油机、齿轮箱、轴系、调距桨等子系统的数学模型,利用Simulink核心组件搭建了推进系统网络层级构架并进行了模拟计算,分析了冷、热机工况下推进系统的动态加、减速特性并进行了仿真优化。结果表明,推进系统在热机减速、冷机加速、冷机减速工况下航速变化平稳,主机运行状况理想。在热机加速工况下,由于加速度达到最大时存在转速振荡调整,易导致主机出现超负荷现象。通过合理地匹配加速过程调节时间可以避免此问题,优化推进系统的动态性能。
In order to clarify the effect of parameter matching between the ship, the diesel engine and the propeller on the dynamic characteristics of ship propulsion system and provide a theoretical basis for the overall optimization and improvement in the later stage, the mathematical models of the subsystems such as diesel engine, gear box, shaft system and pitch propeller were established. The network hierarchy of propulsion system was built by using Simulink core components and the simulation calculation was carried out. The dynamic acceleration and deceleration characteristics of the propulsion system under the cold and heat engine conditions were analyzed and the simulation optimization were carried out. The results show that the speed of ship changes smoothly under the condition of heat engine deceleration, cold engine acceleration and cold engine deceleration, and the diesel engine is in ideal running condition. Under the accelerated condition of heat engine, the speed oscillation adjustment exists when the acceleration reaches the maximum, which easily leads to overload phenomenon of the diesel engine. This problem can be avoided by reasonably matching the adjustment time of the acceleration process, and the dynamic characteristics of propulsion system can be optimized.
2020,42(2): 115-120 收稿日期:2019-02-17
DOI:10.3404/j.issn.1672-7649.2020.02.022
分类号:TK421
作者简介:刘琦(1988-),男,博士,研究方向为动力机械及热力系统的设计、仿真与优化
参考文献:
[1] 陈虞涛, 曾凡明, 陈国钧, 等. 船舶并车推进装置负荷均衡控制策略研究[J]. 舰船科学技术, 2008, 30(5):24-28 CHEN Yu-tao, ZENG Fan-ming, CHEN Guo-jun, et al. Study on power control strategy of marine CODAD propulsion plant[J]. Ship Science and Technology, 2008, 30(5):24-28
[2] 敖晨阳, 陈华清, 曾凡明, 等. 舰船全柴并车后传动装置定量分析研究[J]. 舰船科学技术, 2002, 24(6):26-29 AO Chen-yang, CHEN Hua-qing, ZENG Fan-ming, et al. The Study of quantitative analysis for all diesel parallel running transmissions[J]. Ship Science and technology, 2002, 24(6):26-29
[3] 宋恩哲, 李晓通, 陆平, 等. 柴柴联合动力装置工况切换及控制策略研究[J]. 哈尔滨工程大学学报, 2003, 24(5):518-521 SONG En-zhe, LI Xiao-tong, LU Ping, et al. Operating mode's switch and control strategy of CODAD system[J]. Journal of Harbin Engineering University, 2003, 24(5):518-521
[4] EMIN Korkut, MEHMET Atlar. An Experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers[J]. Ocean Engineering, 2012(41):1-12
[5] 景民, 陆金铭. Matlab/Simulink仿真技术在舰船推进装置中的应用[J]. 船海工程, 2007, 36(4):125-127 JING Min, LU Jing-min. Application of Matlab/Simulink in design of the propulsion device of warship[J]. Ship&Ocean engineering, 2007, 36(4):125-127
[6] 胡明华, 马来好, 杨杰, 等. 基于AMEsim-Simulink的船舶液压推进系统仿真研究[J]. 船舶工程, 2015, 37(12):28-30 HU Ming-hua, MA Lai-hao, YANG Jie, et al. Simulation of marine hydraulic propulsion system based on AMESIM-SIMULINK co-simulation[J]. Ship Engineering, 2015, 37(12):28-30
[7] 严新平, 李志雄, 刘正林, 等. 大型船舶推进系统与船体耦合动力学研究综述[J]. 船舶力学, 2013, 17(4):439-449 YAN Xin-ping, LI Zhi-xiong, LIU Zheng-lin, et al. Study on coupling dynamical theory for interaction of propulsion system and hull of large ships:a review[J]. Journal of Ship Mechanics, 2013, 17(4):439-449
[8] 孔庆福, 吴家明, 曾凡明. 船舶喷水推进系统数学建模及仿真研究[J]. 船舶工程, 2006, 28(2):12-16 KONG Qing-fu, WU Jia-ming, ZENG Fan-ming. Mathematical modeling and simulation of marine water-jet propulsion system[J]. Ship Engineering, 2006, 28(2):12-16
[9] 王海刚. 高速船可调桨推进系统建模及仿真研究[D]. 武汉:武汉理工大学, 2008.