海运、河运增长迅速,船舶污水处理日益受到广泛关注。本文以海洋船舶为主要研究对象,综述了海洋船舶污水的类型、水质特征、处理技术研究和应用进展,并展望了海洋船舶污水处理的膜生物反应器研究与应用方向。海洋船舶污水主要指压舱水以外的船舶污水,主要包括船舶生活污水和含油污水。海洋船舶生活污水的水质、水量随乘员变化较大,呈现污染物浓度高、变化大等特征,其中黑水污染物浓度BOD5 991~5 840 mg/L,SS 1 180~4 980 mg/L;含油污水成分复杂,乳化程度高,舱底水中含油量可达50 000 mg/L。虽然海洋船舶污水排放标准随海域变化较大,但日益严格,这导致船舶污水处理对空间、运行维护的要求高,因此,膜生物反应器成为海洋船舶生活污水处理研究与应用的主流技术。
The rapid growth of sea, river and various other ships has made the ship's sewage treatment more and more concerned. In this study, the ship type, wastewater quality characteristics and treatment progress were summarized through literature review, as well as research and application of membrane bioreactor (MBR) for the marine ship wastewater treatment. Except ballast water, marine ship drainage mainly includes domestic sewage and other sewage containing oil or toxic substances. The quality and quantity of marine ship domestic sewage vary greatly, and pollutants concentrations are high, i.e., BOD5 991~5840 mg/L, SS 1 180~4 980 mg/L. The composition and pollutant concentration of oily sewage are complex and high, i.e., the oil content of the bilge water as high as 50 000 mg/L, and the degree of emulsification of the oily wastewater is high due to frequently shaking. Though discharge standard of marine ship wastewater depends on ocean area, its requirement is becoming increasingly stringent which results in high demand on space and operation and maintenance. Due to small footprint, excellent effluent quality, and easy operation and maintenance, membrane bioreactor has gradually become the mainstream technology for marine ship sewage treatment.
2020,42(3): 6-11 收稿日期:2018-10-10
DOI:10.3404/j.issn.1672-7649.2020.03.002
分类号:O344.7
基金项目:国家重点研发计划资助项目(2016YFE0118500);国家自然科学基金资助项目(21677161);江西省重点研发计划资助项目(20171ACG70018)
作者简介:张青青(1994-),女,硕士研究生,主要从事膜生物反应器研究。
参考文献:
[1] 尹静波. 海事安全管理中的量化风险评估[M]. 上海:上海交通大学出版社, 2015 2-6.
[2] RESEARCH, S C. Shipping Intelligence Weekly[R]. July 7th, 2017.
[3] HALPERN, B S, S WALBRIDGE, K A SELKOE, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 321(5895):948-951.
[4] 董良飞. 船舶生活污水污染特征及控制对策研究[D]. 西安:西安建筑科技大学, 2005.
[5] 中国环境保护部. 船舶水污染物排放标准(二次征求意见稿)编制说明[R]. 2018.
[6] 单立志, 陈孟林, 施汉昌, 等. SBR式流化床船用生活污水处理设备及其处理效果[J]. 环境工程学报, 2006, 7(10):128-131.
[7] DI BELLA, G, D DI TRAPANI, M TORREGROSSA, et al. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase:analysis of biomass activity and fouling behaviour[J]. Bioresource Technology, 2013, 147(11):614-6188.
[8] 龙奎, 齐崴, 杨东方, 等. 电絮凝-电解耦合技术处理船舶生活污水的研究[J]. 工业水处理, 2014(4):40-43.
[9] ZHU L, HE H, WANG C. COD removal efficiency and mechanism of HMBR in high volumetric loading for ship domestic sewage treatment[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2016, 74(7):1509.
[10] BENDICK J, REED B, MORROW P, et al. Using a high shear rotary membrane system to treat shipboard wastewaters:Experimental disc diameter, rotation and flux relationships[J]. Journal of Membrane Science, 2014, 462(28):178-184.
[11] 李剑锋. 一体式A/O膜生物反应器脱氮性能及在船舶污水处理中的应用研究[D]. 大连:大连理工大学, 2008:90-99.
[12] 陈志莉, 易其臻, 熊开生, 等. 生物接触氧化法处理船舶生活污水的中试[J]. 云南农业大学学报(自然科学版), 2009, 24(6):882-886.
[13] PALMQUIST H, J HANAEUS. Hazardous substances in separately collected grey-and blackwater from ordinary Swedish households[J]. The Science of the total environment, 2005, 348(1-3):151-163.
[14] PERIĆ T, KOMADINA P, RAČIĆ N. Wastewater pollution from cruise ships in the Adriatic Sea[J]. Promet-Traffic & Transportation, 2016, 28(4).
[15] PETROVIC N. The model of risk assessment of greywater discharges from the Danube River ships[J]. Journal of Risk Research, 2016(4):1-19.
[16] 中国环境保护部. 船舶水污染物排放控制标准[S]. GB 3552-2018. 北京:中国环境科学出版社. 2018.
[17] 蔡军, 陈勇, 笪靖, 等. 沸石曝气生物滤池处理船舶生活污水的研究[J]. 舰船科学技术, 2017, 39(17):179-184.
[18] CAMPO R, S MITRA, G D BELLA. Analysis of extracellular polymeric substances and membrane fouling of a MB-MBR treating shipboard slops[J]. Journal of Environmental Engineering, 2017, 143(9).
[19] AKARSU C, Y OZAY, N DIZGE, et al. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2016, 74(3):564.
[20] CARLESI C, N G RAMÍREZ, D CARVAJAL, et al. Electrochemical treatment of bilge wastewater[J]. Desalination & Water Treatment, 2015, 54(6):1556-1562.
[21] KORBAHTI B K, K ARTUT. Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes[J]. Desalination, 2010, 258(1-3):219-228.
[22] EMADIAN S M, M HOSSEINI, M RAHIMNEJAD, et al. Treatment of a low-strength bilge water of Caspian Sea ships by HUASB technique[J]. Ecological Engineering, 2015, 82:272-275.
[23] 陈伟, 王祎昱, 谭琴, 等. 船舶含油污水的破乳絮凝处理研究[J]. 工业水处理, 2016, 36(2):25-29.
[24] SMOOKLER A. L., HARDEN J. W., Navy shipboard investigations of oily waste[C]//International Oil Spill Conference Proceedings. 1975:189-193.
[25] KARAKULSKI K, M GRYTA. The application of ultrafiltration for treatment of ships generated oily wastewater[J]. Chemical Papers, 2017, 71(6):1165-1173.
[26] VREYSEN S, A MAES, H WULLAERT. Removal of organotin compounds, Cu and Zn from shipyard wastewaters by adsorption-flocculation:a technical and economical analysis[J]. Marine Pollution Bulletin, 2008, 56(1):106-115.
[27] 许海梁, 熊德琪, 殷佩海. 船舶油污水处理技术进展[J]. 交通环保, 2000, 21(3):5-9.
[28] PENG H, A Y TREMBLAY, D E VEINOT. The use of backflushed coalescing microfiltration as a pretreatment for the ultrafiltration of bilge water[J]. Desalination, 2005, 181(1-3):109-120.
[29] KORKMAZ N E, A AKSU, O S TASKIN, et al. A novel eco-friendly advanced enzymatic Fenton oxidation process for the treatment of ship wastewater[J]. Desalination and Water Treatment, 2017, 84:160-168.
[30] FOROUTAN R, F S KHOO, B RAMAVANDI, et al. Heavy metals removal from synthetic and shipyard wastewater using Phoenix dactylifera activated carbon[J]. Desalination & Water Treatment, 2017, 82:146-156.
[31] SUN C, T LEIKNES, J WEITZENBOCK, et al. Development of an integrated shipboard wastewater treatment system using biofilm-MBR[J]. Separation and Purification Technology, 2010, 75(1):22-31.
[32] SUN C, T LEIKNES, J WEITZENBOCK, et al. Development of a biofilm-MBR for shipboard wastewater treatment:The effect of process configuration[J]. Desalination, 2010, 250(2):745-750.
[33] BELLA DI, G, PRIMA N DI, TRAPANI D DI, et al. Performance of membrane bioreactor (MBR) systems for the treatment of shipboard slops:Assessment of hydrocarbon biodegradation and biomass activity under salinity variation[J]. J Hazard Mater, 2015, 300:765-78.
[34] MCLAUGHLIN C, FALATKO D, DANESI R, et al. Characterizing shipboard bilgewater effluent before and after treatment[J]. Environmental Science & Pollution Research, 2014, 21(8):5637-5652.
[35] 杨东方, 齐崴, 苏荣欣, 等. 填料表面亲水改性对MBBR处理船舶生活污水的影响[J]. 环境工程学报, 2014, 8(5):1895-1898.
[36] SUN C, LEIKNES T, WEITZENBOCK J, et al. Salinity effect on a biofilm-MBR process for shipboard wastewater treatment[J]. Separation and Purification Technology, 2010, 72(3):380-387.
[37] KARGI F, DINCER A R. Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation[J]. Enzyme and Microbial Technology, 1996, 19(7):529-537.
[38] SHARRER M J, TAL Y, FERRIER D, et al. Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system[J]. Aquacultural Engineering, 2007, 36(2):159-176.
[39] ARTIGA P, GARCIA-TORIELLO G, MENDEZ R, et al. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory[J]. Desalination, 2008, 221(1-3):518-525.
[40] YANG J, SPANJERS H, JEISON D, et al. Impact of Na+on biological wastewater treatment and the potential of anaerobic membrane bioreactors:a review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(24):2722-2746.
[41] AREVALO E, CALMANO W. Studies on electrochemical treatment of wastewater contaminated with organotin compounds[J]. Journal of Hazardous Materials, 2007, 146(3):540-545.
[42] FATOKI, O S, AYANDA O S, ADEKOLA F A, et al. Sorption of triphenyltin chloride to n Fe 3 O 4, Fly Ash, and n Fe 3 O 4/Fly Ash composite material in seawater[J]. Acta Hydrochimica Et Hydrobiologica, 2014, 42(4):472-479.
[43] GIUSTRA M G, DI BELLA G. Shipboard wastewater treatment using granular activated carbon:adsorption test and bioregeneration[J]. Journal of Environmental Engineering, 2017, 143(10).
[44] KARAKULSKI K, KOZLOWSKI A, MORAWSKI A W. Purification of oily wastewater by ultrafiltration[J]. Separations Technology, 1995, 5(4):197-205.
[45] TOMASZEWSKA M, ORECKI A, KARAKULSKI K. Treatment of bilge water using a combination of ultrafiltration and reverse osmosis[J]. Desalination, 2005, 185(1-3):203-212.
[46] 白韬光. 船舶污水处理技术及其发展趋势[J]. 机电设备, 2007(1):44-45.
[47] 陈伟, 王祎昱, 谭琴, 等. 船舶含油污水的破乳絮凝处理研究[J]. 工业水处理, 2016, 36(2):25-29.
[48] YOU Z Y, L ZHANG, S J ZHANG, et al. Treatment of oil-contaminated water by modified polysilicate aluminum ferric sulfate[J]. Processes, 2018, 6(7).
[49] LIANG J, C BING, B ZHANG, et al. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation[J]. Water Research, 2015, 81:101.
[50] BOGACKI J P, H AL-HAZMI. Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes[J]. Archives of Environmental Protection, 2017, 43(3):24-31.
[51] JONSSON A S, G TRAGARDH. Ultrafiltration applications[J]. Desalination, 1990, 77(1-3):135-179.
[52] 杨元晖. 膜生物反应器处理船舶污水[J]. 机电设备, 2002, 19(3):10-13.
[53] MOORE R. Wastewater:the drive to convert carbon-based waste to energy, 2017[EB/OL]. http://www.mpropulsion.com/news/view,wastewater-the-drive-to-convert-carbonbased-waste-to-energy_47138.htm.