船舶相对风是指船舶在海面上系泊或航行时测风传感器所测得的风速风向,大中型船舶往往安装2个以上的测风传感器以克服单传感器的局限性。为了综合利用多个传感器的测量值,提出一种基于动态权值的数据融合算法。在此基础上为进一步提高融合数据精度,将参考基准值首先采用卡尔曼滤波进行优化处理,然后再将其代入公式参与融合计算。采用实船航行试验测风数据验证表明,该融合算法能够区分测量值的优劣,倚重更有利的测量信息,有效降低相对风的测量误差,优于目前广泛采用的算数平均值方法。
Wind relative to the ship refers to the wind speed and direction measured by wind sensor when the ship is mooring or sailing on the sea. Two or more wind sensors are usually installed in large and medium-sized ships to overcome the limitations of single sensor. In order to make comprehensive use of the measurement values of multiple sensors, a data fusion algorithm based on dynamic weight is proposed. On this basis, in order to further improve the accuracy of fusion data, the reference base value was first optimized by using Kalman filtering, and then substituted into the formula to participate in the fusion calculation. The verification of the measured wind data from the sea trial shows that the fusion algorithm can distinguish the advantages and disadvantages of the measured value, rely on more favorable measurement information, and effectively reduce the measurement error of relative wind, which is better than arithmetic mean method currently widely used.
2020,42(3): 34-39 收稿日期:2018-11-02
DOI:10.3404/j.issn.1672-7649.2020.03.008
分类号:TP273
作者简介:郭颜萍(1978-),女,高级工程师,研究方向为海洋仪器仪表及船舶气象监测技术。
参考文献:
[1] 胡桐, 漆随平, 郭颜萍,等. 基于船舶空气流场仿真的船舶测风偏差校正方法[J]. 海洋技术学报, 2017, 36(2):28-34.
[2] 王国峰, 赵永生, 范云生. 风速风向测量误差补偿算法的研究[J]. 仪器仪表学报, 2013, 34(4):786-790.
[3] 李志乾, 崔天刚, 胡桐, 等. 船舶真风解算的误差影响分析及修正方法[J]. 海洋技术学报, 2017, 36(1):86-91.
[4] 周扬. 船舶气象仪硬件系统设计与实现[D]. 青岛:中国海洋大学, 2012.
[5] 周亦武, 王国锋, 赵永生. 船舶摇摆状态下风速测量误差分析与补偿研究[J]. 仪器仪表学报, 2014, 35(6):1239-1245.
[6] 郭颜萍, 胡桐, 漆随平, 等. 基于小波变换和LS-SVM的船面风速风向估算方法[J]. 海洋技术学报, 2016, 35(2):66-70.
[7] 刘连吉. 气象仪器与测量[M]. 青岛:青岛海洋大学出版社, 1998.
[8] 潘泉, 程咏梅, 梁彦, 等. 多源信息融合理论及应用[M]. 北京:清华大学出版社, 2013.
[9] HALL DL, LLINAS J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 2002, 85(1):6-23.
[10] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(D):35-45.
[11] SUN SL, DENG ZL. Multi-sensor optimal information fusion Kalman filter[J]. Aerospace Science & Technology, 2004, 8(1):57-62.
[12] 邓蕴昊, 张纳温. 一种改进的加权融合算法[J]. 弹箭与制导学报, 2008, 28(6):311-313.
[13] ZHANG Y, RAN JH. Dynamic weighted track fusion algorithm based on track comparability dDegree[C]//Proceedings of 2010 IEEE International Conference on Information Theory and Information Security. Harbin Heilongjiang, China:IEEE, 2010.
[14] WELCH G, BISHOP G. An Introduction to the Kalman Filter[EB/OL]. http://www.cs.unc.edu/-welch/media/pdf/kalman_intro.pdf.
[15] 杨晓丹, 王运锋, 张小琴. 基于卡尔曼滤波的动态权值融合[J]. 四川大学学报:自然科学版, 2017, 54(5):947-952.
[16] World Meteorological Organization. Guide to meteorological instrument and methods of observation[R]. WMO-No.8. Seventh Edition, World Meteorological Organization, Geneva, Switzerland, 2008.
[17] GREWAL MS, ANDREWS AP. Kalman filtering:theory and practice using MATLAB[M]. Wiley-IEEE Press, 2008.