新型水下平台用于从水面布放设备至海底,或从海底回收至水面指定位置,其主要运动形式为垂向无动力下潜或上浮。为了克服垂向运动过程中来自水平方向洋流的扰动,需要对平台的水平位置和首向进行控制。针对平台水动力系数等模型参数难以计算,水平洋流未知、且水平推进系统布置特殊的特点,设计了不依赖于模型参数且具有全局稳定性的水平面运动控制系统,并应用Lagrange方法对推力分配进行了优化从而减小运动控制的总功耗。最后通过仿真对控制算法进行了验证。
A new type underwater platform is used to deploy equipment from the water surface to the seabed, or recover equipment to the specified location on the water surface. The main form of motion is heave. In order to overcome the disturbance from the horizontal current during the heave motion, it is necessary to control the horizontal position and the heading of the platform. Regarding the difficulty in acquiring accurate model parameters such as platform hydrodynamic coefficient, unknown horizontal ocean current, and the specially configured horizontal propulsion system, this paper designs a horizontal motion control system with global stability that is independent of the model parameters, and Lagrange method is used to optimize the thrust distribution to reduce power consumption. Finally, the simulation verifies the effectiveness of the control algorithm.
2020,42(3): 85-90 收稿日期:2018-12-05
DOI:10.3404/j.issn.1672-7649.2020.03.017
分类号:TP273
作者简介:潘万钧(1994-),男,硕士研究生,研究方向为潜航器运动控制。
参考文献:
[1] 冯正平. 国外自治水下机器人发展现状综述[J]. 鱼雷技术, 2005, 13(1):5-9.
[2] 徐玉如, 庞永杰, 甘永, 等. 智能水下机器人技术展望[J]. 智能系统学报, 2006, 1(1):9-16.
[3] 徐玉如, 李彭超. 水下机器人发展趋势[J]. 自然杂志, 2011, 33(3):125-132.
[4] YAN Zheping,ZHOU Jiajia.Control technology of underwater unmanned vehicles[M].Beijing:National Defense Industry Press,2015:4-15.
[5] 赵志高, 杨建民. 动力定位系统发展状况及研究方法[J]. 海洋工程, 2002, 20(1):91-97.
[6] 王芳, 万磊, 徐玉如, 等. 深水半潜式钻井平台动力定位实时交互仿真系统[J]. 哈尔滨工程大学学报, 2011, 32(11):1395-1401.
[7] ZHAO S, QIAO C, WANG Y. On the navigation positioning technologies in AUV underwater docking[C]//Control Conference. IEEE, 2012:4474-4479.
[8] 王婷, 宋保维. 水下航行器多推进器动力定位控制[J]. 兵工学报, 2006, 27(5):845-850.
[9] RAHIMAH J. Development of prototype remotely operated underwater vehicle[J]. 2011.
[10] YANG Z Y, YANG H F. Research on fuzzy PID control of double closed-loop DC speed tuning system[J]. Application Research of Computers, 2011.
[11] HARROLD S O, LIAO D Z, YEUNG L F. An autonomous underwater platform[M]. 1997.
[12] KÄLLSTRÖM C G. Guidance and control of ocean vehicles:By Thor I. Fossen. Wiley, Chichester (1996). ISBN 0-471-94113-1[J]. Automatica, 1996, 32(8):1235.
[13] TANAKITKORN K, WILSON P A, TURNOCK S R, et al. Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification[J]. Mechatronics, 2017, 41:67-81.
[14] JIN S, KIM J, KIM J, et al. Six-degree-of-freedom hovering control of an underwater robotic platform with four tilting thrusters via selective switching control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2370-2378.
[15] FOSSEN T I, SAGATUN S I. Adaptive control of nonlinear systems:a case study of underwater robotic systems[J]. Journal of Robotic Systems, 1991, 8(3):393-412.
[16] OMERDIC E, ROBERTS G. Thruster fault diagnosis and accommodation for open-frame underwater vehicles[J]. Control Engineering Practice, 2004, 12(12):1575-1598.
[17] ABDI B, MIRZAEI M, GHARAMALEKI R M. A new approach to optimal control of nonlinear vehicle suspension system with input constraint[J]. Journal of Vibration & Control, 2017(1):107754631770459