吊舱推进器是近年来发展起来的一种新型船舶推进系统,是目前船舶推进系统领域引人瞩目的焦点。本文介绍吊舱推进器发展情况和吊舱推进器的原理及优点,以及吊舱电力推进系统中的两项关键技术的发展现状和应用。重点分析现在市场上主流的几种吊舱推进器,对不同型号吊舱推进器的特点进行详细的阐述,并将5种典型的吊舱推进器数据进行统计,对比分析得出结论。
The pod propeller is a new type of ship propulsion system developed in recent years and it is the new focus of the current ship propulsion system. The developments,principle and advantages of the of the pod propeller are introduced, as well as the development status and application of two key technologies in the pod electric propulsion system. The characteristics of different types of pod propellers are elaborated, and the data of five typical pod propellers are statistically analyzed while focusing on several types of pod propellers on the market.
2020,42(4): 8-12 收稿日期:2019-04-16
DOI:10.3404/j.issn.1672-7649.2020.04.002
分类号:U661.31+3
基金项目:国家自然科学基金资助项目(51609190)
作者简介:唐文彪(1995-),男,硕士研究生,专业方向为船舶结构振动和噪声研究
参考文献:
[1] 马伟明. 舰船动力发展的方向—综合电力系统[J]. 海军工程大学学报, 2002(6): 1–5+9
[2] 冀路明, 汪庆周. 21世纪的Azipod吊舱式电力推进系统[J]. 船舶工程, 2002(2): 61–64
[3] AKINTURK A, ISLAM MF, VEITCH B, et al. Performance of dynamic azimuthing podded propulsor[J]. International Shipbuilding Progress, 2012, 59(1): 83–106
[4] 孙诗南. 舰船电力推进在21世纪的发展[J]. 上海造船, 2002(2): 25–28
[5] 高海波, 高孝洪, 陈辉等. 吊舱式电力推进装置的发展及应用[J]. 武汉理工大学学报, 2006(30): 77–79
[6] 姚文龙, 涂志平, 池荣虎, 等. 船舶吊舱推进电机控制策略发展综述[J]. 舰船科学技术, 2017, 39(19): 1–6
[7] 张敏, 侯馨光. 船舶电力推进的新发展[J]. 机电设备, 2001(1): 17–20
[8] 高宜朋, 曾凡明, 张晓峰. 吊舱推进器在舰船推进系统中的发展现状及关键技术分析[J]. 中国舰船研究, 2011, 6(1): 90–96
[9] 马骋. 吊舱推进技术[M]. 上海: 上海交通大学出版社, 2007.
[10] DARNON, FRANCK, et al. An overview of electric propulsion activities in France[J]. Collection of Technical Papers-43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2007: 1603–161
[11] HSAEGAWA C, NISHIKATA S. A simple starting method for self-controlled synchronous motors in electric propulsion systems for ships[C]//European Conference on Power Electronics and Applications, 2007, 9: 1-10.
[12] DO Hyun Kang, YEON HO Jeong, MO ON Hwan Kim. A study on the design of transverse flux linear motor with high power density[C]//IEEE, proceedings, 2, 2001 Industrial Electronics, 2001: 707-711.
[13] 赵清. 中型高效永磁同步电动机设计关键技术研究[D]. 沈阳: 沈阳工业大学2006.
[14] 陈哗, 黄建章. 电力推进控制系统概述[J]. 上海造船, 2007(4): 44–45, 53
[15] 纪锋, 付立军, 叶志浩, 等. 舰船电力推进系统的矢量控制及其仿真[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(2): 361–364
[16] 杨明. 船舶电力推进永磁同步电机非线性反步控制器设计与优化研究[D]. 大连海事大学, 2012.
[17] FLORENT M, XUE fang Lin-Shi, JEAN-MARIE R, et al. A predictive current control applied to a permanent magnet synchronous machine comparison with a classical direct torque control[J]. Electric Power Systems Research, 2008, 78: 1437–1447
[18] 李亮亮, 何勇, 叶海翔. 基于ITAE最优控制的永磁同步电机矢量控制仿真[J]. 电机与控制应用, 2011, 38(6): 31–33+45
[19] https://new.abb.com/cn.
[20] 赵大刚. L型吊舱推进器水动力性能理论及试验技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[21] 孙瑜. 舱体下方带有鳍的吊舱推进器水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[22] 解学参. 吊舱推进器推进及空泡性能的数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[23] 马骋. POD推进器的水动力性能研究[D]. 哈尔滨: 哈尔滨: 哈尔滨工程大学, 2006.
[24] https://www.rolls-royce.com/.
[25] ALSTOM Power Conversion Ltd. The Evolution of Marine and Drilling Drives in Today's Market[R]. Dynamic Positioning Conference, September 18-19, 2001.
[26] https://www.schottel.de/home/.
[27] SSP Propulsor[Z]. Brochure printed by Siemens, 2001.
[28] 聂鹏瑜, 张维竞, 刘卓. 吊舱式电力推进的现状及应用前景[J]. 造船技术, 2003(2): 3–5
[29] STN ATLAS Marine Electronics GmbH, DOLPHIN-The Advanced System in the Field of Pod Drives, April, 2003.
[30] SIGRIST JE Gervot C, LAME C et al. Numerical model for navel POD[C]. Proceedings of the fast International Conference on Technological Advances in Podded Propulsion. University of Newcastle, UK. 2004: 419-429.
[31] VAN Blarcom B, FRANCO A, LEA M, et al. Rim-Drive Propulsion-improving reliability and maintainability over today's pods[A]. In: Atlar M, Clarke D, Glover E J, et al. eds. Proceedings of the 1stInternational Conference on Technological Advances in Podded Propulsion[C]. University of Newcastle, UK, 2004: 73-88.
[32] 张敬南. 船舶电力推进六相同步电动机控制系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[33] https://new.siemens.com/global/en.html.
[34] 马骋, 钱正芳, 张旭. P0D推进器性能和军事应用研究[C]//第十七届全国水动力学研讨会暨第六届全国水动力学学术会议论文集. 北京: 海洋出版社2003.