静电场防护已经成为当今舰船科学领域的一项重大课题,直接影响舰船在作战时的隐身性能。本文重点介绍舰船静电场产生的原因及其现状,分析影响舰船静电场的主要因素,给出了降低舰船静电场的方法,并论述目前针对舰船静电场防护的研究进展。主要从舰船自身的设计工艺、舰船的牺牲阳极阴极保护优化、外加电流阴极保护技术优化、外加补偿电流法等方面出发,探讨对舰船静电场防护的方法,最终得出外加补偿电流法是对舰船静电场防护效果最好的结论。
The submarine electrostatic field protection of ships has become a significant issue in the field of ship science research nowadays, which affects the stealth performance of ships in combat directly. This paper introduces the causes and current situation of the ship's submarine electrostatic field, analyzes the critical factors affecting the submarine electrostatic field of ships, gives typical protection methods which decrease the submarine electrostatic field of ships, and introduces the current research status of the submarine electrostatic field protection of ships. This paper focuses on the design process of the ship itself, the sacrificial anode cathodic protection optimization of the ship, the optimization of the impressed current cathodic protection technology, and the external compensatory current method, to protect the submarine electrostatic field of the ship. Finally, the external compensatory current method is the best conclusion for the protection effect of the ship's submarine electrostatic field.
2020,42(4): 13-17 收稿日期:2019-03-17
DOI:10.3404/j.issn.1672-7649.2020.04.003
分类号:TN95
作者简介:张济平(1993-),男,硕士研究生,研究方向为电磁环境与防护
参考文献:
[1] 陈聪. 舰船电磁场的模型研究和深度换算[D]. 武汉: 海军工程大学, 2008.
CHEN Cong. Research on the modeling and the extrapolation of electromagnetic field of a ship[D]. Wuhan: Naval University of Engineering, 2008.
[2] 许立坤, 马力, 邢少华, 等. 海洋工程阴极保护技术发展评述[J]. 中国材料进展, 2014, 33(2): 106–113
XU Likun, MA Li, XING Shaohua, et al. Review on cathodic protection for marine structures[J]. Chinese Material Progress, 2014, 33(2): 106–113
[3] 魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984.
[4] 邢少华, 李焰, 马力, 等. 深海工程装备阴极保护技术进展[J]. 装备环境工程, 2015, 12(2): 49–53
XING Shaohua, LI Yan, MA Li, et al. Research progress in cathodic protection technology for marine infrastructures in deep sea environment[J]. Equipment Environment, 2015, 12(2): 49–53
[5] 夏兰廷, 黄桂桥, 张三平. 金属材料的海洋腐蚀与防护[M]. 北京: 冶金工业出版社, 2003.
[6] HUBER T, WANG Y. Effect of propeller coating on cathodic protection current demand: sea trial and modeling Studies[J]. Corrosion, 2012, 68(5): 441–448
[7] WU J, XING S, LIANG C, et al. The influence of electrode position and output current on the corrosion related electro-magnetic field of ship[J]. Advances in Engineering Software, 2011, 42(10): 902–909
[8] KIM Y S, LEE S K, CHUNG H J, et al. Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle[J]. Ocean Engineering, 2018, 148: 223–233
[9] HACK H P. Atlas of polarization diagrams for naval materials in seawater[J]. Naval Surface Warfare Center, 1995
[10] LIU Yi, WANG Xiangjun. Study on frequency dividing method of weak acdc hybrid signal of ship’s electric field[C]. 2015 Chinese Automation Congress(CAC), 2015, 1514-1516.
[11] WANG Xiangjun, LIU Yi. Analysis and Simulation of the factors affecting the impressed current cathodic protection potential of the ship[C]//2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME2016), 2016.
[12] WANG Xiangjun. Electric field protection method based on metallic polarization[J]. Revista de la Facultad de Ingenieria, 2017, 32(7): 219–224
[13] WANG Xiangjun, LIU Yi. Research on Protective method of ship electrostatic field based on metal polarization control[J]. Bulgarian Chemical Communications, 2018, 50(4): 647–654
[14] 王向军, 柳懿, 刘德红. 基于船体-螺旋桨电位平衡的水下静电场防护方法研究[J]. 海军工程大学学报, 2018, 30(4): 8–13
WANG Xiangjun, LIU Yi, LIU De Hong. Research on underwater electrostatic field protection method based on potential balance of the ship full and propeller[J]. Journal of Naval University of Engineering, 2018, 30(4): 8–13
[15] 柳懿, 王向军. 影响舰船外加电流阴极保护电位因素分析及仿真[J]. 全面控制腐蚀, 2017, 31(1): 38–41
LIU Yi, WANG Xiangjun. Analysis and simulation of factors affecting impressed current cathodic protection potential of the ship[J]. Full Control of Corrosion, 2017, 31(1): 38–41