本文利用快速多极子面元法的高效性与精确性,对近水面潜体在水平面曲线运动过程中的时域兴波势流问题展开研究。首先确定了自由面网格密度及时域更新方法以保证数值模拟的准确性,探索了椭球潜体在水下做直线运动与曲线运动时阻力系数与升力系数变化的区别,明确了曲线运动过程中各项系数的变化规律,并针对不同的偏航角度的兴波特性进行比较,研究偏航角度大小对于潜体兴波阻力、升力以及表面兴波波形的影响。研究结果表明,当偏航角较大时,表面兴波对曲线运动潜体所受阻力和升力影响均非常显著;随着偏航角度的变大,各波系间的相互作用更加明显,表面波形更为复杂,导致了兴波阻力激增,阻力及升力曲线均出现大幅波动且不对称性。
In this paper, the wave making resistance of submerged body in curvilinear motion of the same depth is studied using the fast multipole panel method with high efficiency and accuracy. After determining the appropriate grid density, difference between the rectilinear motion and curvilinear motion in wave making resistance and lift force becomes clear. For different values of the so-called yawing angle, quantitative analysis is done to find out the influence of the angle on the wave making resistance, lift force and the generating surface waves. The results turn out to be that when the yawing angle is large, the influence of the surface wave on the resistance and lift is significant. As the yawing angle increases, interaction between different wave components becomes significant, the waveform on the surface is more complicate, and the curves of resistance and lift force have large fluctuation and become asymmetry.
2020,42(4): 18-24 收稿日期:2018-11-29
DOI:10.3404/j.issn.1672-7649.2020.04.004
分类号:U661
作者简介:孙博伟(1994-),男, 硕士研究生,研究方向为水动力学问题数值计算
参考文献:
[1] 韩端锋, 黄德波. 近水面潜体兴波阻力的数值预报和收敛性分析[J]. 船舶力学, 2005, 9(1): 29–35
HAN Duan-feng, HUANG De-bo. Numerical prediction and convergence analysis of wave resistance for submerged body near free surface[J]. Journal of Ship Mechanics, 2005, 9(1): 29–35
[2] 杨向晖, 叶恒奎, 刘娟, 等. 潜体近水面航行兴波阻力计算[J]. 华中科技大学学报(自然科学版), 2008, 36(4): 129–132
YANG Xiang-hui, YE Heng-kui, LIU Juan, et al. Computation of the wave making resistance of submerged body moving beneath water surface[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2008, 36(4): 129–132
[3] ROKHLIN V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1985, 60(2): 187–207
[4] GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325–348
[5] HACKBUSCH W, NOWAK Z P. On the fast matrix multiplication in the boundary element method by panel clustering[J]. Numerische Mathematik, 1989, 54(4): 463–491
[6] CHENG H, GREENGARD L, ROKHLIN V. A fast adaptive multipole algorithm in three dimensions[J]. Journal of Computational Physics, 1999, 155(2): 468–498
[7] LIN Z, LIAO S. Calculation of added mass coefficients of 3D complicated underwater bodies by FMBEM[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(1): 187–194
[8] CHEN Z S, WAUBKE H, KREUZER W. A formulation of the fast multipole boundary element method (FMBEM) for acoustic radiation and scattering from three-dimensional structures[J]. Journal of Computational Acoustics, 2008, 16(02): 303–320
[9] WANG Y, WANG Q, WANG G, et al. An adaptive dual-information FMBEM for 3D elasticity and its GPU implementation[J]. Engineering Analysis with Boundary Elements, 2013, 37(2): 236–249
[10] LIN Z, LIAO S. Calculation of added mass coefficients of 3D complicated underwater bodies by FMBEM[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(1): 187–194
[11] 沈王刚, 郑尧坤, 林志良. 多极子面元法近水面椭球体兴波时域研究[J]. 舰船科学技术, 2018(8): 14–22
SHEN Wang-gang, ZHENG Yao-kun, LIN Zhi-liang. Multipole panel method for the time-domain wave making research for ellipsoid near free surface[J]. Ship Science and Technology, 2018(8): 14–22
[12] LIU Y J, NISHIMURA N. The fast multipole boundary element method for potential problems: a tutorial[J]. Engineering Analysis with Boundary Elements, 2006, 30(5): 371–381
[13] NISHIMURA N. Fast multipole accelerated boundary integral equation methods[J]. Applied Mechanics Reviews, 2002, 55(4): 299–324
[14] YOSHIDA K. Applications of fast multipole method to boundary integral equation method[J]. Kyoto: Kyoto University, 2001
[15] 林志良. 比例边界有限元法及快速多极子边界元法的研究与应用[D]. 上海: 上海交通大学, 2010.
LIN Zhi-liang. Research and Application of Scaled Boundary FEM and Fast Multipole BEM[D]. Shanghai: Shanghaijiaotong University, 2010.