针对水下非接触爆炸问题过程复杂、计算速度慢的问题,本文以一环肋圆柱壳为例,基于以内嵌的水下爆炸载荷计算方法和声-结构耦合方法为关键技术的水下爆炸分析法(AUA),对其水下爆炸冲击下的响应进行了分析。结果发现,壳板厚度对圆柱壳的水下非接触爆炸响应有较为显著的影响,随着壳板厚度的增加,环肋圆柱壳最大位移减小的幅度逐渐变小。在爆炸初期爆距对环肋圆柱壳冲击响应的影响不大,随时间的推移这种影响逐渐增大,环肋圆柱壳各测点变形随爆距的增大线性减小;当肋骨间距大于0.25倍环肋圆柱壳长时,环肋圆柱壳最大变形量可减小90%;继续减小肋骨间距,环肋圆柱壳最大变形减少量并不明显,说明肋骨对其附近测点和中间的板壳起到了显著的加强作用,肋骨间距为0.25倍环肋圆柱壳长时为最经济的肋骨布置方式。
Aiming at the problem of underwater non-contact explosion process is complicated, the calculation speed is slow, this paper takes a ring stiffened cylindrical shell for example, coupled with embedded underwater explosion load calculation method and structure method based on key technology of underwater explosion analysis (AUA), in response to the underwater explosion under the impact of the analysis results show that the shell thickness of the cylindrical shell of the underwater non-contact explosion response has a significant impact, with the increase of the shell thickness, the maximum displacement amplitude of ring stiffened cylindrical shell decreases gradually. Little impact from the response of ring stiffened cylindrical shell shock explosion in the initial explosion, gradually increased with the passage of time effect, ring stiffened cylindrical shell of the measuring point deformation decreases linearly with blast distance increases; when the frame spacing is 0.25 times larger than the ring stiffened cylindrical shell length, the maximum deformation of ring stiffened cylindrical shell can be reduced after 90%. Continued reducing frame spacing, the maximum deformation of ring stiffened cylindrical shell to reduce the amount that is not obvious; the ribs at the measuring point and the middle shell plays a significant role in strengthening; frame spacing is 0.25 times as long as the ring stiffened cylindrical shell with ribs arranged the most economical way.
2020,42(4): 25-30 收稿日期:2019-03-27
DOI:10.3404/j.issn.1672-7649.2020.04.005
分类号:U661.43
作者简介:刘东(1978-),男,工程师。研究方向为舰船维修与管理工程
参考文献:
[1] RUNGSIYAPHORNRAT S, KLASEBOER E, KHOO B C et al. The merging of two gaseous bubbles with an application to underwater explosions[J]. Computers and Fluids, 2003, 32: 1049–1074
[2] ZHANG A M, BAO Y N, BING Y S et al. Numerical simulation of bubble breakup phenomena in a narrow flow field[J]. Applied Mathematics and Mechanics, 2010, 31(4): 449–460
[3] 张玮, 史少华. 水面舰艇舰员对水下爆炸冲击响应[J]. 爆炸与冲击, 2011, 31(5): 521–527
[4] 张阿漫, 王诗平, 汪玉, 等. 水下爆炸对舰船结构损伤特征研究综述[J]. 中国舰船研究, 2011, 6(3): 1–7
ZHANG A M, WANG S P, WANG Y, et al. Advances in the Research of characteristics of warship structural damage due to underwater explosion[J]. China ship research, 2011, 6(3): 1–7
[5] 祝祥刚, 刘莹, 陈舸, 等. 水下非接触爆炸作用下的船体结构响应分析[J]. 计算机辅助工程, 2013, 22(2): 248–251
[6] 吴广明, 陈炜, 吴敌, 等. 水下非接触爆炸下船体爆炸弯矩简化计算方法[J]. 中国舰船研究, 2017, 12(3): 58–63
WU G M, CHEN W, WU D, et al. Calculation of explosion bending moment in hull girders subjected to non-contact underwater explosions[J]. Chinese Journal of Ship Research, 2017, 12(3): 58–63
[7] 吴敌, 吴广明, 李正国, 等. 水下非接触爆炸冲击下舱段模型的仿真分析[J]. 舰船科学技术, 2016, 38(9): 37–41
WU Di, WU Guang-ming, LI Zheng-guo, et al. Numerical simulation analysis of cabin models subjected to underwater explosion shock wave[J]. Ship Science and Technology, 2016, 38(9): 37–41
[8] 肖锋, 谌勇, 朱大巍, 等. 水下非接触性爆炸下分层圆孔覆盖层动响应及抗冲击性能研究[J]. 振动与冲击, 2013, 32(19): 111–118
[9] 赵延杰.近距及接触水下爆炸冲击波作用下结构毁伤的数值模拟[D]. 大连: 大连理工大学. 2013: 14.
[10] 李金河, 赵继波, 谭多望等. 炸药水中爆炸的冲击波性能[J]. 爆炸与冲击, 2009, 29(2): 172–176
[11] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. J. Acoust. Soc. Am, 2002, 111(4): 1584–1601