襟翼舵作为一种可靠的、高升力的舵在最近几年内引起了广大设计工作者的重视影响,同时也有不少成熟的研究成果。对襟翼舵的研究主要集中在展弦比,主副舵面积比,转角比等方面,这些因素对襟翼舵的整体影响规律也已得到不少专家的解释。本文主要研究襟翼舵主副舵间间隙大小以及尺度效应对其水动力性能的影响,以普通NACA0020翼型为基本剖面建立不同间隙大小的襟翼舵模型,采用RANS方法计算得到了不同缝隙大小以及不同缩尺比下的襟翼舵升力阻力以及压力分布,并对周围涡结构以及流场进行分析,发现升力系数随着缝隙增大而减小,阻力系数先减小再增大的规律。同时随着襟翼舵尺度的增大,升力系数会随之增大,阻力系数会随之减小。文中以计算模型和实验数据进行对比,两者误差在5%以内,证明了计算结果的可靠性。
As a reliable, high lift rudder, flap-rudder has attracted the attention of many researchers in recent years, also there are a lot of mature research results. Most studies on the flap- rudder main focus on the aspect ratio, the flap area and the attack angle ratio of skeg and movable flap.The effect on rudder's hydrodynamic performance of gap size and it's size effect between skeg and movable flap is studied in this paper. Calculations were performed to determine the effects of flap gap variation on the characteristics of an NACA 0020 modified airfoil section configured as a 30% flapped all movable rudder. The pressure distribution on rudder surface, the hydrodynamic performance of the flap rudder and the eddy in flow filed were discussed.it was found that because of changes of pressure and eddy distribution the the lift coefficient decreases with the gap, the drag coefficient decreases and then increases. At the same time as the flap rudder scale increases, the lift coefficient will be increased, the drag coefficient will be decreased. Theoretical prediction of the gap size at 2.63mm lift and drag coefficient for a 6 degree flap angle at a 10 degree angle of attack has been verfied. The difference between experimental and calculated values is less than 5%.
2020,42(4): 46-50 收稿日期:2019-01-29
DOI:10.3404/j.issn.1672-7649.2020.04.009
分类号:U661.3
作者简介:杨洋(1980-),男,工程师,主要从事舰船总体研究
参考文献:
[1] 许汉珍, 周谟蟾. 船用襟翼舵流体动力系数的计算[J]. 华中科技大学学报: 自然科学版, 1983, 4
[2] 丁玲玲, 刘胜, 邓志红, 等. 舰船主舵/襟翼舵广义预测联合控制规律研究[J]. 哈尔滨工程大学学报, 2000
[3] 孙长龙. 襟翼舵的设计计算[J]. 武汉水运工程学院学报, 1979, 4
[4] 韦云生. 襟翼舵的设计探讨[J]. 船舶工程, 1978, 1
[5] 沈国光, 张泽盛. 襟翼舵水槽敞水试验[J]. 船海工程, 1981
[6] 李亚臣, 王晋军. NACA0012翼型Gurney襟翼增升特性及其机理实验研究[C]//全国低跨声速空气动力学会议2003.
[7] 张攀峰, 陈迎春, 左林玄, 等. 超临界翼型Gurney襟翼增升技术实验研究[J]. 实验流体力学, 2010
[8] 谢俊超. 襟翼舵设计计算及水动力性能仿真研究 [D]. 武汉: 武汉理工大学, 2011.
[9] 丁玲玲, 刘胜. 舰船主舵/襟翼舵广义预测联合控制规律研究[J]. 哈尔滨工程大学学报, 2000, 21(3): 1–6
[10] 崇谦. 船用襟翼舵[M]. 北京: 国防工业出版社, 1989.
[11] 杨建民. 襟翼舵水动力性能研究[J]. 上海交通大学学报, 1997, 31(11): 133–136
[12] 黄胜, 虞海军. 贝克型襟翼舵性能理论计算及图谱[J]. 哈尔滨工程大学学报, 1995, 16(3): 1–10
[13] 周执平. 渔船襟翼舵的设计[J]. 中外船舶科技, 2005(2): 10–15
[14] KERWIN J E, MANDEL P, LEWIS S D. An experimental study of a series of flapped rudders[R]. Massachusetts Inst of Tech Cambridge Dept of Ocean Engineering, 1971.
[15] AHN H S, KIM H C. An application of coanda effect to a flapped rudder[J]. J. of Ship and Ocean Technology, 1999, 3(4): 23–24
[16] HAE-SEONG A. Experimental study on the effects of water jetting on a flapped rudder[J]. Journal of the Society of Naval Architects of Korea, 1999, 36(1): 22–29
[17] MOLLAND A F, TURNOCK S R. Marine rudders and control surfaces: principles, data, design and applications[M]. utterworth-Heinemann, 2011.
[18] SHENG H, HAIJUN Y, YUNLING N, et al. Theoretical calculation and chart for the performance of becker flap-rudder[J]. Journal of Harbin Engineering University, 1995, 3
[19] YUE-WEN B I. Design and installation of 4000 DWT multi-purpose carrier flapped rudder[J]. Ship Engineering, 2009, 3: 002