面对深海设备检修作业工作需求,基于SolidWorks虚拟设计技术,开展面向深海作业型机器人的总体模块化设计。基于有限元和经验公式,校核机器人承压构件的强度与稳定性;基于粘性流体理论,对ROV结构本体的阻力性能进行数值计算,为推进系统的设计和选型提供参考依据。针对机器人各项性能分析结果表明,机器人的结构性能满足1 200 m水深要求,推进系统可满足机器人对设计航速的要求。本文提出的面向深海作业型机器人的模块化设计方法可有效提高机器人设计的效率。
Facing the needs of deep sea equipment maintenance work.The research on overall modular design for deep-sea working robots is carried out based on the SolidWorks virtual design The strength and the stability of the pressure bearing members of the robot are analyzed based on the FEM and the empirical formula to realize the lightweight design with satisfactory structural strength. The viscous flow theory based investigations on the resistance performance of the robot in forward and downward motion are carried out as the guidance for the design and selection of the propulsion system. The analyze results of the robot properties show that the structural performance of the robot could meet the requirement of operations under 1200 meters water depth. Meanwhile, the configuration and the thrust of the propulsion system could meet the requirement of the robot navigation at the design velocity. The modular design method proposed in this paper effectively improves the efficiency of the robot design.
2020,42(4): 90-95 收稿日期:2019-01-18
DOI:10.3404/j.issn.1672-7649.2020.04.018
分类号:U674
基金项目:江苏省产业前瞻与共性关键技术资助项目(BE2017121);南通市海洋经济创新发展示范项目
作者简介:于庚(1990-),男,硕士研究生,研究方向为船舶与海洋结构物水动力性能
参考文献:
[1] 柯冠岩, 吴涛, 李明, 等. 水下机器人发展现状和趋势[J]. 国防科技, 2013, 34(5): 44–47+6
[2] 罗伟林, 吕文靖. 水下机器人型线自动优化设计[C]//中国造船工程学会优秀学术. 2014.
[3] 孙端晨, 卢曦. 基于图谱设计方法的水下机器人螺旋桨设计方法[J]. 电子科技, 2017, 30(1): 147–149
[4] LEE M Hy, PARK Y D, etc. Hydrodynamic design of an underwater hull cleaning robot and its evaluation[J]. Inter J Nav Archit Oc Engng, 2012, 4: 335–352
[5] DANIAL K, REZA K. Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf[J]. Ocean Engineering, 2017, 136: 18–30
[6] 杨明岩. 深海重型ROV双机械手设计与研究[D]. 大庆, 东北石油大学, 2018.
[7] 孙朝阳, 盛文利, 齐辉, 等. 水下沟槽式管道连接件安装作业机器人设计[J]. 机械设计与制造, 2015(5): 127–129+133
[8] 尚闻博, 深海耐压舱设计的ANSYS仿真研究[D]. 青岛: 中国海洋大学, 2015.
[9] 徐亚国. 水下机器人耐压电子舱设计与制作[J]. Internal Combustion Engine, 2017: 115–115
[10] STEIN M. N, MARTIN L, et al. Underwater photogrammetric mapping of an intact standing steel wreck with ROV[C]//IFAC-Papers OnLine, 2015, 48(2): 206–211.
[11] 卞子玮. 可翻转式带缆水下机器人(ROV)的总体设计和水动力学性能研究[D]. 镇江: 江苏科技大学, 2017
[12] 申强龙. 有缆水下机器人结构设计与分析[D]. 杭州: 杭州电子科技大学, 2017.