桨叶根部负荷及毂涡能量利用研究一直是螺旋桨设计研究工作的重要内容之一。为分析螺旋桨根部尾涡系结构,本文采用RANS方法对敞水螺旋桨进行定常数值模拟,通过与水动力测试及LDV流场测量数据对比验证了数值模拟的可靠性。将数值模拟结果与空泡流动显示对照,说明了毂涡是由桨毂端面发展出的轴心涡及缠绕在其表面的叶根尾涡共同构成,分析了毂涡强度与桨毂环量的关系,论述轴心涡的形成机理。
The propeller radial circulation distribution and hub vortex energy recycling is one of the important subjects in propeller design. To research the vortex structure in propeller root wake, the RANS method was adopted to simulate the steady propeller wake. According to the comparisons of CFD simulation and the results of open water test and LDV measurement, the calculation results are reliable. From simulation and flow visualization, the vortex structure was declared, the relationship between hub vortex intensity and the hub circulation was analyzed, and the mechanism of hub vortex was discussed.
2020,42(5): 34-39 收稿日期:2019-06-21
DOI:10.3404/j.issn.1672-7649.2020.05.007
分类号:U661.1
作者简介:李鹏程(1986-),男,博士研究生,主要从事船舶推进器设计开发工作
参考文献:
[1] LERBS H W. Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulations[J]. Transactions - Society of Naval Architects and Marine Engineers, 1952, 60: 73–123
[2] KERWIN J E, LEOPOLD R. A design theory for subcavitaing propellers[C]//SNAME 1964.
[3] 孙文愈. 螺旋桨性能分析与优化设计中桨毂的影响分析[J]. 中国造船, 2016, 57(1): 19–29
[4] BRIZZOLARA S, GAGGERO S, GRASSI D. Hub effect in propeller design and analysis[C]//Third International Symposium on Marine Propulsors, Australia, 2013.
[5] HONG FANGWEN, DONG SHITANG. Numerical analysis for circulation distribution of propeller blade[J]. Journal of Hydrodynamics, 2010, 22(4): 488–493
[6] SHIN K W, ANDERSEN P. CFD study on effective wake of conventional and tip-modified propellers[C]//31st Symposium on Naval Hydrodynamics, America, 2016.
[7] JESSUP S D. An experimental investigation of viscous aspects of propeller blade flow[D]. The Catholic University of America, 1989.
[8] WANG M H. Hub effects in propeller design and analysis[D]. Cambridge: Massachusetts Institute of Technology, 1985.
[9] KUMAR P, MAHESH K. Large eddy simulation of propeller wake instabilities[J]. Journal of Fluid Mech, 2017, 814: 361–396
[10] FELLI M, ROBERTO C, GUJ G. Experimental analysis of the flow field around a propeller-rudder configuration[J]. Exp Fluids, 2009, 46: 147–164
[11] FELLI M, CAMUSSI R, DIFELICE F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mech, 2011, 682: 5–53
[12] KIM W, JANG Y, KIM M. Performance analysis for DSME cap fin in model and full scale[C]//PRADS 2016.
[13] 李鑫. 桨后节能舵球的水动力性能分析[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[14] 高德宝. 消涡轮节能装置的机理分析及效果论证评估[D]. 无锡: 中国船舶科学研究中心, 2015.
[15] LI Pengcheng, ZHOU Weixin, DONG Shitang. A design method of PBCF[J]. 中国造船, 2014, 55(1): 19–27
[16] LI Pengcheng, ZHANG Guoping, ZHOU Weixin. LDV measurements of flow field of propeller with PBCF for CFD Validation[C]//Advanced Maritime Engineering Conference, Taipei, 2012: GT-12.
[17] 董郑庆. 导管推进器内流场测试研究[D]. 无锡: 中国船舶科学研究中心, 2006.
[18] JESSUP S, CHESNAKAS C, FRY D, et al. Propeller performance at extreme off design conditions. Proceedings of the 25th Symposium on Naval Hydrodynamics, Canada, 2004.
[19] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mech, 1995, 285: 69–94
[20] ZHANG Yuning, XU Qiu, CHEN Feipeng, et al. A selected review of vortex identification methods with applications[J]. Journal of Hydrodynamics, 2018, 30(5): 767–779