拖式吊舱推进器的螺旋桨与吊舱之间干扰剧烈,流动现象较为复杂,为研究拖式吊舱推进器的水动力特性,基于粘性理论,滑移网格技术,借助商用流体计算软件FINE / Marine,分别完成了三维实尺度的裸桨及吊舱推进器的敞水性能数值模拟。着重在吊舱对螺旋桨水动力性能的影响、吊舱侧向受力、吊舱表面压力和周围流场速度分布方面进行了分析。结果表明,由于吊舱的存在,螺旋桨的推力扭矩均有所提升,但是整体推进器的效率没有明显改善,反而使螺旋桨推力波动增大;吊舱在螺旋桨尾流影响下会产生额外的侧向力。
The interference between the propeller and the pod of the pull POD thruster is strong, and the flow phenomenon around the thruster is complicated. In order to study the hydrodynamic characteristics of the pull POD thruster, based on the viscous theory, the sliding mesh technology, using the commercial fluid calculation software FINE/marine, the numerical simulations of the open water performance of a three-dimensional real-scale propeller and a pull POD thruster were completed. The hydrodynamic performances of the propeller with or without the pod were compared and analyzed. The transverse force of the pod,surface pressure of the pod and velocity distribution of the flow field around the pod were analyzed. The results show that the thrust and torque of the propeller are improved due to the existence of the pod, but the efficiency of the overall thruster is not improved and the thrust fluctuation is increased; due to the wake of the propeller, the pod generates additional transverse force.
2020,42(5): 44-49 收稿日期:2019-02-28
DOI:10.3404/j.issn.1672-7649.2020.05.009
分类号:U664.33
基金项目:创新专项(工信部联装[2016]24号)
作者简介:姚震球(1964-),男,教授,研究方向为船舶流体力学
参考文献:
[1] 高宜朋, 曾凡明, 张晓锋. 吊舱推进器在舰船推进系统中的发展现状及关键技术分析[J]. 中国舰船研究, 2011, 6(1): 90–6
[2] 张志荣, 洪方文, 胡芳琳. 吊舱推进器水动力性能CFD预报及其验证[C]. 船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会, 2008.
[3] 郭春雨, 杨晨俊, 马宁. RANS Simulation of Podded Propulsor Performances in Straight Forward Motion[J]. 中国海洋工程(英文版), 2008, 22(4): 663–74
[4] 沈兴荣, 蔡荣泉, 冯学梅. 粘性流场中吊舱推进器水动力性能数值研究[J]. 中国造船, 2010, 51(1): 17–26
[5] 董小倩. 吊舱推进器水动力性能数值研究[D]. 上海: 上海交通大学, 2013.
[6] 吴琼, 冯学梅, 贾力平. 使用Numeca软件的吊舱推进器敞水性能计算[C]. 全国水动力学研讨会, 2014.
[7] 马骋, 陈科, 庄光宇. 基于粘流CFD方法的吊舱推进器水动力性能研究[C]. 船舶水动力学学术会议, 2013.
[8] 赵丙乾, 方昭昭, 肖曙明. 基于FINE/Marine的螺旋桨水动力性能研究[J]. 船舶工程, 2018, 40(4): 45–50
[9] METHRIC E. Theoretical Manual of ISIS-CFD v7.2[ED/OL]. Ecole Centrale de Nantes, France: http://www.ec-nantes.fr. 2018.
[10] P. LIU, The design of a podded propeller base model geometry and prediction of its hydrodynamics. No. TR-2006-16[R]. Canada: Institute for Ocean Technology, National Research Council, 2006.
[11] ISLAM M. Performance study of podded propulsors with varied geometry and azimuthing conditions[J]. International Shipbuilding Progress 2009, (56): 135-57.
[12] SHAMSI R, GHASSEMI H. Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors[J]. International Journal of Naval Architecture & Ocean Engineering, 2013, 5(2): 287–301