强非线性冰载荷对极地航行商船的阻力和主机功率计算均提出巨大挑战。以往计算冰级船主机功率时,通常采用规范法的经验公式。尽管经验公式计算简便,但由于没有考虑航速变化对主机功率的影响,计算结果往往过于保守。本文基于离散元的理论方法和数值模型,采用阻力–速度曲线法建立了冰区加强型商船主机功率计算方法。借鉴中国商船“永盛轮”首航北极的实际航行经验,将预报方法应用于B1冰级的36 000 t冰级多用途船的主机功率计算中。计算结果表明,该方法计算获得的主机功率较规范法小。该预报方法将为我国极地商船设计与制造提供技术支撑。
Nonlinear ice loads present huge challenges on calculating the resistance and power of main engine of ice-classed ships. Empirical formulas of the rules of classification society are usually adopted to calculate the power of main engine of ice-classed ships. Although it is easy to use the empirical formula, the result is usually much larger than that needed due to the neglect of the effects of speed. Based on the theoretical method and numerical model of Discrete Element Method (DEM), resistance-velocity curve is used to calculate the power of main engine of ice-classed ships. Considering the actual navigation experiences of Chinese merchant ship ‘Yongsheng’ through arctic route, the proposed method is applied to calculate the power of main engine of a B1 ice-classed 36 000 DWT multi-purpose vessel (MPV). It is found that the calculated power of main engine of this method is smaller than that obtained from empirical formulas of the rules of classification society. The method and model aim to provide technical supports for the arctic navigation of Chinese merchant ships.
2020,42(5): 50-55 收稿日期:2019-07-16
DOI:10.3404/j.issn.1672-7649.2020.05.010
分类号:U661.31
基金项目:国家重点研发计划(2017YFE0111400);国家自然科学基金资助项目 (51979051,51639004,51979056);黑龙江省自然科学基金资助项目(A2018003)
作者简介:倪宝玉(1986-),男,博士,教授,主要从事极地船舶运动学研究
参考文献:
[1] 中华人民共和国国务院新闻办公室. 中国的北极政策[R]. 2018年1月.
[2] 李振福, 王文雅, 刘翠莲. 北极丝绸之路战略构想与建设研究[J]. 产业经济评论, 2016(2): 113–124
[3] 赵庆爱. “永盛”轮的北极破冰之旅[J]. 中国海事, 2014(9): 17–20
[4] 薛彦卓, 倪宝玉. 极地船舶与浮体结构物力学问题研究综述[J]. 哈尔滨工程大学学报, 2016, 37(1): 36–40
[5] 中国船级社. 钢质海船入级与建造规范[S]. 2012.
[6] Finnish Maritime Administration, Finnish-Swedish Ice Class Rules[S], 2002.
[7] 夏讨饭, 曹凯, 唐桂斌, 等. 极地航行船舶最小功率计算研究[J]. 船舶标准化工程师, 2017, 50(5): 38–42
[8] LINDQVIST G A. Straightforward method for calculation of ice resistance of ships[J]. Performance, 1989
[9] 黄焱, 孙剑桥, 季少鹏, 等. 大型运输船极地平整冰区航行阻力的模型试验[J]. 中国造船, 2016, 57(3): 36–44
[10] DERRADJI-AOUAT A. Experimental uncertainty analysis for ship model testing in the ice tank[C]//25th Symposium on Naval Hydrodynamics, Canada, 2004.
[11] IZUMIYAMA K, KITAGAWA H, KOYAMA K, et al. On the interaction between a conical structure and ice sheet[C].//Proceeding of 11th International Conference on Port and Ocean Engineering under Arctic Conditions. Newfoundland, Canada, 1991.
[12] SU B, KAJ R, TORGEIR M. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science and Technology, 2010, 60(3): 177–188
[13] HANSEN E H, LØSET S. Modelling floating offshore units moored in broken ice: model description[J]. Cold Regions Science and Technology, 1999, 29(2): 97–106
[14] LAU M, LAWRENCE K P, ROTHENBURG L. Discrete element analysis of ice loads on ships and structures[J]. Ships and Offshore Structures, 2011, 6(3): 211–221
[15] 季顺迎, 李紫麟, 李春花, 等. 碎冰区海冰与船舶结构相互作用的离散元分析[J]. 应用力学学报, 2013(4): 520–526
[16] 蔡柯, 季顺迎. 平整冰与船舶结构相互作用的离散元分析[J]. 船舶与海洋工程, 2016, 32(5): 5–14
[17] 严颖, 李勇俊, 季顺迎. 自动卸煤车卸料时间的离散元分析[J]. 大连交通大学学报, 2016, 37(3): 73–78
[18] KREMMER M, FAVIER J F. A method for representing boundaries in discrete element modelling-part II- Kinematics[J]. International Journal for Numerical Methods in Engineering, 2001, 51: 1423–1436
[19] 狄少丞, 季顺迎, 薛彦卓. 船舶在平整冰区行进过程的离散元分析[J]. 海洋工程, 2017, 35(3): 59–69
[20] ITTC committee. Proceeding of 8th International Towing Tank Conference (ITTC)[C]. Madrid, Spanish, 1957.