针对寒区船舶杆件结构的结冰问题,采用Fluent和Fensap-ice相结合的方法对杆件结构结冰开展数值模拟。选取风速作为敏感参数,分析了风速变化对结冰厚度和结冰量的影响,得出如下结论:随着风速从1 m/s增加到7 m/s,杆件表面冰厚最大值的位置逐渐向左移动,因为水滴速度随来流速度的增加而增加,在位移相同时水滴更快到达结构表面,水滴运动轨迹偏转更小,更多的水滴撞击到0°位置处,冰厚最大值也随之向0°方向移动;风速为7 m/s时杆件表面的冰厚并未远大于1 m/s时的冰厚,因为风速为1 m/s时圆柱表面所结霜冰的密度仅为7 m/s时的22.8%,当质量一定时,冰的密度越小体积就会越大,因此虽然1 m/s时结冰量仅为7 m/s的18.1%,但冰厚并未远小于7 m/s时的冰厚;在风速为1~7 m/s区间内,随着风速的增加,杆件表面的结冰量近似的呈线性方式增加。
Aiming at the ice problem of the ship's pole structure in the cold region, using Fluent and FENSAP-ICE combined method to carry out numerical simulation on icing of rod structure. The wind speed is selected as the sensitive parameter, and the influence of the change of the wind speed on the ice thickness and the ice quality is analyzed. The conclusion is as follows: with the increase of the wind speed from 1 m/s to 7 m/s, the position of the maximum ice thickness on the pole surface gradually moves to the left, because the water droplet velocity increases with the increase of the inflow velocity, at the same time of displacement, the water droplet reaches the structure surface faster, the deflection of the water droplet trajectory is smaller, more water droplets hit the 0° position, and the maximum ice thickness also moves to the 0° direction; when the wind speed is 7 m/s, the ice thickness on the rod surface is not much greater than that when the wind speed is 1 m/s, because when the wind speed is 1 m/s, the rime density on the cylinder surface is only 22.8% of that at 7 m/s, when the mass is fixed, the smaller the ice density is, the larger the ice volume is. Therefore, although the ice volume at 1 m/s is only 18.1% of that at 7 m/s, the ice thickness is not much less than that at 7 m/s; in the wind speed range of 1~7 m/s, with the increase of wind speed, the ice quality on the rod surface increases approximately in a linear way.
2020,42(5): 56-60 收稿日期:2019-12-25
DOI:10.3404/j.issn.1672-7649.2020.05.011
分类号:U663.6
基金项目:国家自然科学基金(51878125);江苏省高等学校自然科学研究重大项目(18KJA580003);江苏省“六大人才高峰”高层次人才项目(2018-KTHY-033)和江苏省研究生科研与实践创新计划项目(SJKY19_2664)
作者简介:沈杰(1993-),男,硕士研究生,研究方向为极地船舶与海洋工程
参考文献:
[1] 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45–53
XIE qiang, CHEN hailong, ZHANG jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45–53
[2] 郎舒妍. 极地船舶发展动态及展望[J]. 船舶物资与市场, 2018(5): 32–34
[3] SHEKHTMAN A. N The probability and intensity of the icing up of ocean going vessels[J]. Cold Regions Research and Engineering Laboratory, 1968, 50(2): 55–65
[4] KATO, R. Modelling of ship superstructure icing. Master thesis[J]. Norwegian University of Science and Technology, Trondheim, Norway, 2012
[5] 李岩, 王绍龙, 易贤, 周志宏, 郭龙. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2)–126
[6] 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005(6): 1010–1017
CHEN weijian, ZHANG dalin. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005(6): 1010–1017
[7] 顾声龙, 吴玉帅, 袁晓伟, 等. 水平轴风力机叶片翼型霜冰结冰的数值研究[J]. 青海大学学报(自然科学版), 2015, 33(3): 1–5
[8] 吴俊杰, 陈志超, 姚若鹏, 等. 机翼结冰过程中过冷水滴运动轨迹的数值研究[J]. 武汉大学学报(工学版), 2019, 52(3): 277–282
WU junjie, CHEN zhichao, YAO ruopeng, et al. Numerical Study on the Movement Trajectory of Supercooled Water Drops during Wing Icing[J]. Engineering Journal of Wuhan University, 2019, 52(3): 277–282
[9] 杜雁霞, 桂业伟, 肖春华, 等. 飞机结冰过程的液/固相变传热研究[J]. 航空动力学报, 2009, 24(8): 1824–1830
[10] HORJEN IVAR. Numerical modeling of two-dimensional sea spray icing on vessel-mounted cylinders[J]. Cold Regions Science and Technology, 2013, 93: 20–35
[11] ISO 12494: 2017, Atmospheric icing of structures[S]. Switzerland: ISO Copyright Office, 2017.
[12] MAGNE A. DRAGE A. B, GARD H. C. Atmospheric icing in a coastal mountainous terrain. Measurements and numerical simulations, a case study[J]. Cold Regions Science and Technology, 2008, 53: 150–161
[13] DEHGHANI, S. R., MUZYCHKA, Y. S., NATERER, G. F Droplet trajectories of wave impact sea spray on a marine vessel[J]. Cold Regions Science and Technology, 2016, 127: 1–9
[14] 李岩, 王绍龙, 冯放. 风力机结冰与防除冰技术[M]. 北京: 中国水利水电出版社, 2017.
[15] 汪仕靖. 极地航区船舶积冰预报模型研究[D]. 大连: 大连理工大学, 2018.
[16] 孟繁鑫, 陈维建, 梁青森, 等. 引射式结冰风洞内圆柱结冰试验[J]. 航空动力学报, 2013, 28(7): 1467–1474
[17] MACKLIN, W. C. The density and structure of ice formed by accretion[J]. Journal of the Roy. Met. Soc., 1962, 88