在某舰炮炮架模型和后坐阻力条件下,综合参与系数、有效质量等因素确定了炮架的固有频率阶数,得到具有显著影响的频率阶数及其振型。对炮架受到后坐阻力激励时的瞬态模态动态特性进行分析,得到了最大应力点、最大变形点、最大支反力点等随时间变化曲线,结果较传统静力分析高出1倍左右.对需要重点关注的4阶振型及其振动动能进行剖析,明确沿后坐阻力方向振动的第3阶振型是炮架的主要振动形式。炮架振动过程能量变化表明,后坐阻力激励的过程也是炮架内部应变能、动能不断耗能的过程,后坐阻力传递到甲板基座存在衰减;支反力沿圆周方向非均布分布,存在四处支反力最大部位。
Under conditions of one navy gun carriage model and recoil resistance, the most remarkable of frequency number and its modes are analyzed considering about participating factors and effective mass. Transient modal dynamic analysis of gun carriage is studied and curves of stress vs. time, displacement vs. time and reaction force vs. time with points that maximum values occur. They are one time or so than traditional static analysis. Four important modes of vibration and kinetic energy are analyzed, and the third mode of vibration is the main vibration type along the direction of recoil resistance. The change of vibration energy indicates that the proceeding of recoil resistance applying on gun carriage is a proceeding of energy consuming by elastic strain energy and kinetic energy in gun carriage. Force that passed on to board foundation exists damping. Reaction Force is non-uniform along circumference path on the supporting face of board foundation and four parts have maximum Reaction Force.
2020,42(5): 127-132 收稿日期:2019-06-09
DOI:10.3404/j.issn.1672-7649.2020.05.024
分类号:TJ391
作者简介:邱群先(1972-),男,研究员,主要从事舰炮技术研究
参考文献:
[1] 化斌斌, 马吉胜, 吴大林. 某型舰炮炮架本体有限元模态分析[J]. 科技通报, 2012, 28(11): 161–164
HUA Binbin, MA Jisheng, WU Dalin. Finite element modal analysis of a naval gun carriage body[J]. Bulletin of science and technology, 2012, 28(11): 161–164
[2] 张瑛, 杨中桂, 张云杰. 某型舰炮炮架结构优化影响因素[J]. 舰船科学技术, 2014, 36(1): 135–138
ZHANG Ying, YANG Zhonggui, ZHANG Yunjie. Research on the influence factors of a certain naval gun carriage's structure optimiazation[J]. Ship science and technology, 2014, 36(1): 135–138
[3] 刘郑国, 龚沈光. 基于ANSYS的舰炮托架模态分析[J]. 舰船科学技术, 2010, 32(9): 51–54
LIU Zhengguo, GONG Shenguang. Modal analysis of naval gun bracket based on ansys[J]. Ship science and technology, 2010, 32(9): 51–54