自主水下机器人(AUV)与移动对接平台之间的实时路径规划,是AUV与移动对接平台进行自主对接的使能技术之一。针对复杂动态环境下AUV与水下移动平台对接的实时性和终端姿态需求,研究了一种基于混合整数线性规划 (Mixed Integer Linear Programming,MILP)的AUV与水下移动平台对接的实时路径规划方法。利用对障碍物约束、AUV本体约束进行相应的分析和线性化,根据多个对接阶段的需求设计了距离收敛、时间最优和姿态最优等不同的目标优化函数,建立了移动对接目标函数,形成相应的多约束线性规划模型,实现对AUV加速度优化,得到满足所有约束且目标函数最优的实时优化路径。最后,在充分考虑AUV实际的动力学模型下的仿真实验分析,验证了此方法的有效性。
The real-time path planning between AUV and mobile docking platform is one of the enabling technologies for autonomous docking between AUV and mobile docking platform. Aiming at the real-time and terminal attitude requirements of AUV docking with underwater mobile platform in complex dynamic environment, a real-time path planning method for AUV docking with underwater mobile platform based on mixed integer linear programming is studied. The obstacle constraints and AUV body constraints are analyzed and linearized. According to the requirements of multiple docking stages, different objective optimization functions, such as distance convergence, time optimization and attitude optimization, are designed. The objective function of mobile docking is established. The corresponding multi-constraint linear programming model is formed to optimize the AUV acceleration, and the real-time optimization path with all constraints and the objective function is obtained. Finally, the effectiveness of this method is verified by considering the simulation experiment under the actual dynamic model of AUV.
2020,42(5): 148-152 收稿日期:2019-04-19
DOI:10.3404/j.issn.1672-7649.2020.05.028
分类号:TP242
基金项目:中国科学院战略先导专项项目(XDA13030203);国家重点研发计划项目(2016YFC0301601,2016YFC0300604,2017YFC1405401);中国科学院科研装备研制项目(YZ201441);中国科学院青年创新促进会基金资助项目(2011161);国家自然科学基金资助项目(61821005)
作者简介:时常鸣(1993-),男,硕士研究生,主要研究方向为海洋机器人路径规划。
参考文献:
[1] TEO K, AN E, BEAUJEAN P. A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 143–155
[2] TEO K, GOH B, CHAI O K. Fuzzy docking guidance using augmented navigation system on an AUV[J]. IEEE Journal of Oceanic Engineering, 2012, 40(2): 349–361
[3] JANTAPREMJIT P, WILSON P A. Optimal control and guidance for homing and docking tasks using an autonomous underwater vehicle[C]//Mechatronics and Automation, 2007. ICMA 2007. International Conference on. IEEE, 2007: 243-248.
[4] JANTAPREMJIT P, WILSON P A. Guidance-control based path following for homing and docking using an autonomous underwater vehicle[C]//Oceans 2008-MTS/IEEE Kobe Techno-Ocean. IEEE, 2008: 1-6.
[5] 姜言清. 约束条件下欠驱动AUV的路径规划问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 16-36.
Jiang Y Q. Research on path planning of underactuated auv under constraints[D]. Harbin: Harbin engineering university, 2013: 16-36.
[6] 李晔, 姜言清, 张国成, 等. 考虑几何约束的AUV回收路径规划[J]. 机器人, 2015, 37(04): 478–485
LI Y, JIANG Y q, ZHANG G c, et al. AUV recovery path planning considering geometric constraints[J]. Robot, 2015, 37(04): 478–485
[7] ZU D, HAN J D, TAN D L. Acceleration space lp for the path planning of dynamic target pursuit and obstacle avoidance[C]//The 6th World Congress on Intelligent. Control and Automation.Dalian, 2006: 9084-9088.
[8] STOKEY R, PURCELL M, FORRESTER N, et al. A docking system for REMUS, an autonomous underwater vehicle[C]//OCEANS'97. MTS/IEEE Conference Proceedings. IEEE, 1997, 2: 1132-1136.
[9] MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter (21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 550–562
[10] STOKEY R, ALLEN B, AUSTIN T, et al. Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 487–497
[11] 程大军. AUV环境建模及行为优化方法研究[D]. 北京: 中国科学院大学, 2011: 44-46.
CHENG D J. Research on auv environmental modeling and behavior optimization[D]. Beijing: University of chinese academy of sciences, 2011: 44-46.