为了明确极地破冰船关键部位钛合金的疲劳裂纹扩展行为,本文以89 mm厚钛合金为试验对象,完成室温以及低温下的疲劳裂纹扩展速率试验。从钛合金的a-N曲线表明随着温度的降低,钛合金的寿命增加;对a-N曲线进行数据处理得到疲劳裂纹扩展速率的双对数曲线。结果表明:在一定应力强度因子内,随着温度的降低,疲劳裂纹扩展速率降低;在−60 ℃时,断裂韧性降低,在一定应力强度因子以外,裂纹扩展速率提高;在极地正常温度内,可以确定钛合金满足极地低温疲劳裂纹扩展速率要求,但是在−60 ℃以下的一些极端极地气温下,防止脆性破坏成为疲劳设计的重点;试验数据能为极地破冰船进一步抵抗低温疲劳和冷脆断裂设计提供参考;采用采用所提出的预报公式对钛合金疲劳裂纹扩展速率的中速率区和高速率区进行预报,预报结果显示该预报公式能较好的预报该钛合金的低温疲劳裂纹扩展速率的2个区域。
In order to clarify the fatigue crack growth behavior of the titanium alloy in the key parts of the polar icebreaker, a 89 mm thick titanium alloy was used as the experimental object to complete the fatigue crack growth rate experiment at room temperature and low temperature. The a-N curve of the titanium alloy shows that the life of the titanium alloy increases with the decrease of temperature; the data processing of the a-N curve results in a double logarithmic curve of the fatigue crack growth rate. The results show that within a certain stress intensity factor, the fatigue crack growth rate decreases with the decrease of temperature; at -60℃, the fracture toughness decreases, and the crack growth rate increases beyond a certain stress intensity factor; in the polar normal temperature, It can be determined that the titanium alloy meets the requirements of the ultra-low temperature fatigue crack growth rate, but at some extreme polar temperatures below -60℃, preventing brittle failure becomes the focus of fatigue design; the test data can further resist low temperature fatigue and cold brittle fracture for polar icebreakers. Design provides a reference. The fatigue crack growth rate of titanium alloy was predicted by using the prediction formula, The prediction results show that the formula can predict the crack propagation rate well.
2020,42(6): 30-33 收稿日期:2019-04-16
DOI:10.3404/j.issn.1672-7649.2020.06.006
分类号:U661.2
作者简介:王珂(1979-),女,博士,副教授,从事船舶结构疲劳强度研究
参考文献:
[1] 王哲, 岳亚霖, 李永正. 基于Zencrack的钛合金保载-疲劳裂纹扩展速率预报[J]. 中国海洋平台, 2018, 33(1):22-28
[2] 王珂, 谢晓波, 李永正, 等. 钛合金Ti-6Al-4V室温保载-疲劳寿命预报方法研究[J]. 中国造船, 2018, 59(2):123-128
[3] 李永正, 卞超, 王珂, 等. 海洋结构物用钛合金Ti-6AL-4V保载——疲劳试验研究(英文)[J]. 船舶力学, 2018, 22(9):1124-1135
[4] 顾浩洋, 王珂, 尹群. 钛合金疲劳小裂纹扩展行为预报方法研究[J]. 舰船科学技术, 2017, 39(7):45-48+58
[5] 王珂, 王芳, 崔维成, 等. 基于疲劳寿命预报统一方法小裂纹扩展寿命研究(英文)[J]. 船舶力学, 2014, 18(6):678-689
[6] 王元清, 廖小伟, 贾单锋, 等. 钢结构的低温疲劳性能研究进展综述[J]. 建筑钢结构进展, 2018, 20(1):1-11
[7] 张玉玲. 低温环境下铁路钢桥疲劳断裂性能研究[J]. 中国铁道科学, 2008(1):22-25
[8] WALTERS C L, ALVARO A, MALJAARS J. The effect of low temperatures on the fatigue crack growth of S460 structural steel[J]. International Journal of Fatigue, 2016, 82:110-118
[9] LÜ B T, ZHENG X L. A model for predicting fatigue crack growth behavior of a low alloy steel at low temperature[J]. Engineering Fracture Mechanics, 1992, 42(6):1001-1009
[10] 廖小伟, 王元清, 石永久, 等. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10):85-91
[11] DE JESUS A M P, MATOS R, FONTOURA B F C, et al. A comparison of the fatigue behavior between S355 and S690 steel grades[J]. Journal of Constructional Steel Research, 2012, 79:140-150
[12] STEPHENS R I, CHUNG J H, GLINKA G. Low temperature fatigue behavior of steels -a review[R]. Society for Automotive Engineering, Technical Paper 790517, 1979.
[13] MOODY N R, GERBERICH W W. Fatigue crack propagation in iron and two iron binary alloys at low temperatures[J]. Materials Science and Engineering, 1979, 41:271-280
[14] VERKIN B, GRINBERG N, SERDYUK V, et al. Low temperature fatigue fracture of metals and alloys[J]. Materials Science and Engineering, 1983, 58:145-168
[15] TOBLER R L, CHENG Y W. Midrange fatigue crack growth data correlations for structural alloys at room and cryogenic temperatures[R]. ASTM STP 857. Philadelphia, PA, American Society for Testings and Materials, 1985:3−30.
[16] LÜ B T, ZHENG X L. Predicting fatigue crack growth rates and thresholds at low temperatures[J]. Materials Science and Engineering A, 1991, 148:179-188
[17] 宋伟. 冬季中国东部与北极之间近地面温度变化的年际联系[A]. 中国气象学会. 第35届中国气象学会年会S7东亚气候、极端气候事件变异机理及气候预测[C]. 中国气象学会:中国气象学会, 2018:2.