基于振动信号理论分析以及振动噪声试验方法,对某舰船转台系统的表面振动加速度以及表面声压级进行测试研究分析。实验结果表明,随着转台系统转速的增大,其振动加速度值以及噪声值显著增加。不同工况下,振动与噪声能量分布较为一致且主要集中在1 200~2 000 Hz之间,峰值频率间隔为方位电机轴频。主轴的齿轮啮合频率对应振动噪声能量较小,方位电机和减速机的振动加速度明显大于转台主轴齿轮振动加速度,相同转速下方位电机连减速机空转时噪声值大于转台噪声值,方位电机和减速机为转台系统噪声主要来源。对方位电机以及减速机进行减振处理,可降低转台噪声值。
Based on the theoretical analysis of vibration signal and the method of vibration and noise test, the surface vibration acceleration and surface sound pressure level of a ship turntable system are measured and analyzed.The experimental results show that the vibration acceleration and the noise increase significantly with the increase of the rotating speed of the turntable system.Under different working conditions, the energy distribution of vibration and noise is consistent and mainly concentrated between 1 200 Hz and 2 000 Hz, and the peak frequency interval is shaft frequency of azimuth motor.The corresponding vibration noise energy of main shaft gear meshing frequency is small, the vibration acceleration of azimuth motor and reducer is obviously higher than the vibration acceleration of spindle gear of turntable, and the noise of azimuth motor continuous reducer is greater than that of turntable at the same speed. Azimuth motor and reducer are the main sources of noise in turntable system.The noise of turntable can be reduced by reducing vibration of azimuth motor and reducer.
2020,42(6): 75-79 收稿日期:2019-06-04
DOI:10.3404/j.issn.1672-7649.2020.06.015
分类号:TB535
作者简介:朱曾辉(1990-),男,硕士,工程师,主要从事机电装备总体设计工作
参考文献:
[1] 柴岩, 钟良, 杨建刚. 汽轮机低压缸轴承座振动分析和动平衡试验研究[J]. 汽轮机技术, 2017, 59(1):50-52 CAI Yan, ZHONG Liang, YANG Jian-gang. Bearing pedestal vibration analysis and balance test of a turbine low pressure rotor with bearing located on the exhaust cylinder[J]. Turbine Technology, 2017, 59(1):50-52
[2] 肖汉林, 于俊卫, 张瑞斌, 等. 鱼雷电机-艉轴系统振动与声辐射特性分析[J]. 鱼雷技术, 2005, 13(4):33-36 XIAO Han-lin, YU Jun-wei, ZHANG Rui-bin, et al. Research on vibration and acoustic radiation characteristic of torpedo electric motor and stern shaft system[J]. Torpedo Technology, 2005, 13(4):33-36
[3] 仇远旺, 王国治, 胡玉超, 等. 舰船振动噪声的快速预报技术[J]. 舰船科学技术, 2011, 33(11):89-93 QIU Yuan-wang, WANG Guo-zhi, HU Yu-chao, et al. Research on fast predict method for vibration and underwater noise of warship[J]. Ship Science and Technology, 2011, 33(11):89-93
[4] ABBES MS, BOUAZIZ S, CHAARI F. An acoustic-structural interaction modelling for the evaluation of a gearbox-radiated noise[J]. International Journal of Mechanical Sciences, 2008, 50(3):569-577
[5] 唐善政. 汽车驱动桥噪声的试验研究与控制[J]. 汽车科技, 2000(3):14-19 TANG Shan-zheng. Experimental research and control of automobile drive axle noise[J]. Automobile Science and Technology, 2000(3):14-19
[6] 舒歌群, 韩睿. 往复压缩机噪声诊断及降噪研究[J]. 压缩机技术, 2004, 15(1):8-11 SHU Ge-qun, HAN Rui. Noise dignosis and studies on decreasing noise for reciprocating compressor[J]. Compressor Technology, 2004, 15(1):8-11
[7] 谢平, 王晓光. 某型燃气涡轮起动机振动测试系统的研发[J]. 液压与气动, 2016(7):89-94 XIE Ping, WANG Xiao-guang. Realization of vibration testing system for gas turbine starter[J]. Chinese Hydraulics & Pneumatics, 2016(7):89-94
[8] 沈国际, 陶利民, 温熙森, 等. 基于Wigner分布的齿轮箱振动信号相位估计[J]. 机械工程学报, 2004, 40(9):185-189 SHEN Guo-biao, TAO Li-min, WEN Xi-sen, etc. Phase estimation of gear box vibration signal based on Wigner distribution[J]. Chinese Journal of Mechanical Engineering, 2004, 40(9):185-189
[9] 杜巧连, 张克华. 基于自身振动信号的液压泵状态监测及故障诊断[J]. 农业工程学报, 2007, 23(4):120-123 DU Qiao-lian, ZHANG Ke-hua. Condition monitoring and fault diagnosis of hydraulic pump based on inherent vibration signals[J]. Transactions of the CSAE, 2007, 23(4):120-123
[10] 王勇. 小波变换下舰船辐射噪声特征提取[J]. 舰船科学技术, 2016, 38(22):10-12 WANG Yong. Ship radiated noise feature extraction based on wavelet transformation[J]. Ship Science and Technology, 2016, 38(22):10-12