本文针对一种基于中部流入式的膜电容法脱盐装置组件,建立了脱盐单元的三维瞬态分析模型。在对模拟结果线性回归拟合验证了该模型适用性基础上,对脱盐单元进行了数值模拟分析。结果表明:随着入口孔径的增大,MCDI脱盐单元的出口最低浓度升高,而出口最高浓度降低;且入口孔径越大,其达到吸附饱和的时间越长,但吸附效率越小,脱附时间也相应增加,脱附效率能够达到的峰值也越大;同一入口孔径条件下,反接脱附方式下能够达到的最高出口浓度均高于短接方式。
Based on the middle inflow type desalting module in membrane capacitance method, a three-dimensional transient analysis model of desalting unit was established. Then the applicability of the model was verified by linear regression fitting of simulation results, and the desalting unit was analyzed by numerical simulation. The results show that with the increase of inlet aperture, the minimum outlet concentration of MCDI desalting unit increases, while the maximum decreases. The larger the inlet aperture, the longer the desalting unit reaches the adsorption saturation time, and the smaller the adsorption efficiency, yet the more the desorption time increases, and the higher the desorption efficiency peak. Under the same inlet aperture, the maximum outlet concentration in reverse desorption mode both achieves higher than that in short.
2020,42(6): 110-114 收稿日期:2019-06-03
DOI:10.3404/j.issn.1672-7649.2020.06.022
分类号:U664.591
基金项目:江苏省船舶高科技系统创新项目(HZ20160009)
作者简介:肖民(1969-),女,博士、教授,研究方向为船舶动力装置性能与系统优化设计,船舶轮机技术
参考文献:
[1] BIENER J, STADERMANN M, SUSS M, et al. Advanced carbon aerogels for energy applications[J]. Energy and Environmental Science, 2011, 4(03):656-667
[2] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854
[3] SHPIGEL N, LEVI M D, SIGALOV S, et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes[J]. Nature Materials, 2016, 15(05):570-575
[4] GUYES E N, SHOCRON A N, SIMANOVSKI A, et al. A one-dimensional model for water desalination by flow-through electrode capacitive deionization[J]. Desalination, 2017, 415:8-13
[5] F HE, BIESHEUVEL P M, BAZANT M Z, et al. Theory of water treatment by capacitive deionization with redox active porous electrodes[J]. Water Research, 2018, 132:282-291
[6] JIMOH O, JERINA Z, ABDUL H, et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization:From theory to practice[J]. Separation and Purification Technology, 2018, 207:291-320
[7] 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展[J]. 水处理技术, 2016, 42(05):38-44
[8] BIESHEUVEL P M, ZHAO R, PORADA S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(01):239-248
[9] HASSANVAND A, CHEN G Q, WEBLEY P A, et al. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization[J]. Water Research, 2018, 131:100-109
[10] WANG L, LIN S H. Theoretical framework for designing a desalination plant based on membrane capacitive deionization[J]. Water Research, 2019, 158:359-369
[11] PORADA S, WEINSTEIN L, DASH R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials and Interfaces, 2012, 4(03):1194-1199
[12] ZHAO R, BIESHEUVEL P M, MIEDEMA H, et al. Charge efficiency:A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. Journal of Physical Chemistry Letters, 2010, 1(01):205-210
[13] BIESHEUVEL P M. Two-fluid model for the simultaneous flow of colloids and fluids in porous media[J]. Journal of Colloid and Interface Science, 2011, 355(02):389-395
[14] BIESHEUVEL P M, VANDERWAL A. Membrane capacitive deionization[J]. Journal of Membrane Science, 2010, 346(02):256-262
[15] LI H B, PAN L K, ZHANG Y, et al. Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibres electrodes[J]. Chemical Physics Letters, 2010, 485(1-3):161-166