基于定位考虑对带月池的深水作业钻井船的漂移载荷进行了时域模拟分析。采用API风谱描述不规则风场,基于风生浪因素设置分析的环境参数,基于OCIMF计算风载荷和流载荷;利用势流理论和Newman假设计算二阶波浪漂移力载荷,提取得到数值结果并进行处理,得到不同方向、不同环境条件下各项漂移力的统计值和统计特征。结果表明:在时域内对深水作业钻井船漂移载荷进行分析,更加具有真实性,波浪、风、流引起的漂移载荷依次减小,且均随环境条件的增大而快速增加;在风向、流向和浪向不同时,使得船首处于迎浪状态对钻井船的定位有利;优化船体外型是降低钻井船漂移载荷的有效手段。
Time domain simulation for drift loads of a deep-water drilling ship with a moonpool is analyzed considering the positioning. The irregular wind field is described by API wind spectrum, and the environmental parameters are set by considering the factors of wind and wave. The wind load and currents load are calculated by OCIMF based on empirical formula, and the second-order wave drift loads are calculated and analyzed by potential theory and Newman hypothesis. The numerical results are extracted and processed, and the statistical values of drift loads in different directions and under different environmental conditions are obtained, and the statistical characteristics of drift loads are analyzed. The results show that the analysis of drift loads of deepwater drilling vessels in time domain is more realistic. The drift loads caused by waves, winds and currents decrease in turn and increase rapidly with the increase of environmental conditions. When the directions of wind, flow and wave are different, it is beneficial to the positioning of drilling vessel when the bow is in head sea. Optimizing hull shape is an effective way to reduce the drift load of drilling ship.
2020,42(6): 115-120 收稿日期:2020-03-04
DOI:10.3404/j.issn.1672-7649.2020.06.023
分类号:U674.38;P751
基金项目:国家自然科学基金青年项目(51909148);山东交通学院博士科研启动基金资助;山东交通学院攀登计划;山东交通学院校级基金(Z201814)
作者简介:孙承猛(1979-),男,博士,高级工程师,主要研究方向为船舶与海洋工程设计与评估。
参考文献:
[1] ALFHEIM H L, MUGGERUD K, BREIVIK M, et al. Development of a dynamic positioning system for the revolt model ship[J]. IFAC-Papers On Line, 2018, 51(29):116-121
[2] HU kaiye, DING Yong, WANG Hongwei, et al. Analysis of capability requirement of dynamic positioning system for cargo transfer vessel at sea[J]. Journal of Marine Science and Application, 2019, 18(02):205-212
[3] 何进辉, 张海彬, 朱仁传, 等. 某深海钻井船DP3定位能力分析[J]. 船舶, 2018(5):11-17
[4] DAENG P, HARIS M A, SYAMSUL A. Maneuverability of ships with small draught in steady wind[J]. Makara Journal of Technology, 2016, 20(1):24-30
[5] 林一, 胡安康, 蒋玮. 海洋平台风载荷的数值分析[J]. 船舶工程, 2014, 36(1):104-108
[6] 汤晶, 王博, 罗瑞锋. 自升式平台风载荷规范计算方法分析研究[J]. 船舶工程, 2016, 38(S1):34-38
[7] CHEN C, SHIOTANI S, SASA K. Effect of ocean currents on ship navigation in the East China Sea[J]. Ocean Engineering, 2015, 104(4):283-293
[8] JUNG Chang-hyun, NAM Taek-kun. The lateral current force coefficient in the real ship towing test[J]. Journal of the Korean Society of Marine Environment & Safety, 2016, 22(5):373-379
[9] 贾宝柱, 纪然, 杨德才. 基于CFD的海洋工程船舶流载荷特性仿真[J]. 舰船科学技术, 2018, 40(10):82-86, 92
[10] 王建方, 李辉辉, 徐正强. 两浮体在波浪中二阶漂移力的三维方法研究[J]. 船舶, 2008(2):18-22
[11] 金辉, 王腾. 考虑二阶波浪荷载效应的海上TLP浮式风机分析[J]. 海洋技术学报, 2019, 38(1):66-72
[12] GUANGHUA H, MASASHI K. Time-domain analysis of steady ship-wave problem using higher-order BEM[J]. International Journal of Offshore and Polar Engineering, 2014, 24(1):1-10
[13] SUNG K M, JIN P J, KYU A Y, et al. Hydrodynamic Characteristics of Deepwater Drillship for North Sea[J]. Journal of Ocean Engineering and Technology, 2015, 29(4):300-308
[14] KIM, BW, HONG, SY, SUNG, HG. Comparison of drift force calculation methods in time domain analysis of moored bodies[J]. Ocean Engineering, 2016, 126(4):81-91
[15] 章柯, 杭岑, 施兴华, 等. 含月池开孔的FPSO水动力性能及波浪载荷研究[J]. 船舶工程, 2016, 26(S2):47-52, 266