本文针对某罩壳结构局部模型的试验过程中出现的反向凹曲问题,以有限元仿真方法研究曲壳的弯曲特性及影响因素,重点探讨曲壳曲率、厚度以及曲壳的弯曲刚度等因素对曲壳屈曲、后屈曲过程中的位移、应力以及曲壳屈曲后回复特性的影响。研究表明:曲率半径及壳板厚度与曲壳的弯曲刚度正相关,提高曲率半径可有效增加曲壳的承载能力;曲壳弯曲刚度对曲壳抗弯特性的影响为线性,屈曲载荷随弯曲刚度增加而线性增大。
In this paper, the inverse concave curve of a local model of a shell structure is analyzed. The bending characteristics and influence factors of the curved shell are studied by the finite element simulation method. The influence of curvature, thickness and bending stiffness of curved shell on the buckling of curved shell and the displacement and stress in the post buckling process are mainly discussed. The effect of the post buckling response characteristics of a curved shell. The study shows that, the curvature radius and the thickness of the shell plate are positively related to the bending stiffness of the curved shell, and the increase of the radius of curvature can effectively increase the bearing capacity of the curved shell, the flexural stiffness of the curved shell has a linear effect on the bending property of the curved shell, and the buckling load increases linearly with the increase of the flexural rigidity.
2020,42(7): 40-44 收稿日期:2018-11-20
DOI:10.3404/j.issn.1672-7649.2020.07.008
分类号:U668.3+4
作者简介:董云龙(1995-),硕士研究生,研究方向为船体结构与振动
参考文献:
[1] PERI D, CAMPANA E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research, 2003, 47(1): 1-12
[2] EEFSEN T, WALREE F V, PERI D. Development of frigate designs with good sea keeping characteristics[C]//9th Symposium on Practical Design of Ships and Other Floating Structures. Luebeck-Travemuende, Germany, 2004.
[3] 冯佰威. 基于多学科设计优化方法的船舶水动力性能综合优化研究[D]. 武汉: 武汉理工大学, 2011.
[4] 石小红, 李成友, 王婷婷, 等. 复合材料层合板力学性能试验研究[J]. 工程与试验, 2014(01): 39-41+81
[5] STEEVES CA. FLECK NA Material selection in sandwich beam construction[J]. Scripta Materialia, 2004, 50: 1335-1339
[6] MARTENS K, CASPEELE R, BELIS J. Development of composite glass beams—a review[J]. Engineering Structures, 2015, 101: 1-15
[7] CHENG QH, LEE HP, LU C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J]. Composite Structures, 2006, 74: 226-236
[8] 沈林观, 胡更开, 刘彬.复合材料力学[M]. 第2版.北京: 清华大学出版社, 2013: 159-168.
[9] 孙家斌. Donnell圆柱壳屈曲问题中的辛方法[D]. 大连: 大连理工大学, 2013.
[10] 朱琳, 余音, 汪海. 复合材料曲板缺陷及安装误差对屈曲性能的影响[J]. 航空学报, 2016, 37(7): 2180-2188
[11] NOOR A K. AND BURTON W S Assessment of shear deformation theories for multilayered composite plates[J]. Appl. Mech. Rev. ASME, 1989, 42(1): 1-13
[12] REDDY J N. and ROBBINS D H Theories and computational models for composite laminates[J]. Appl. Mech. Rev. ASME, 1994, 47(6): 147-169
[13] KAPANIA R K. and RACITI S Recent advances in analysis of laminated beams and plates, part II: vibrations and wave propagation[J]. AIAA J., 1989, 27(7): 935-946
[14] CARRERA E. Historical review of Zig-zag theories for multilayered plates and shells[J]. Appl. Mech. Rev. ASME, 2003, 56(3): 287-308
[15] KAPANIA R K. and RACITI S Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling[J]. AIAA J., 1989, 27(7): 923-934
[16] NOOR A K., BURTON W S. and BERT C W. Computational models for sandwich panels and shells[J]. Appl. Mech. Rev. ASME, 1996, 49(3): 155-199. REDSHAW S C. The Elastic Stability of a Curved Plate Under Axial Thrusts[J]. Aeronautical Journal, 42(330): 536-55
[17] 杨帆, 岳珠峰, 李磊. 基于弧长法的加筋板后屈曲特性分析及试验[J]. 应用力学学报, 2015(1): 119-124