基于CFD方法,对质量比为7的单圆柱和并列双圆柱的涡激振动进行数值模拟研究,对单圆柱涡激振动的研究表明:其锁定区为4.8<UR<7.6,在锁定区内旋涡发放频率被结构的固有频率锁定,位移与升力的相位差为零,圆柱的无量纲振幅急剧增大。在锁定区边缘,由于涡脱频率不能完全被结构的固有频率锁定,出现“拍振”现象。对并列双圆柱涡激振动的研究表明:流场充分发展达到稳定的时间随间距比的增大而增加,在3.0≤T*≤4.0时,两圆柱的振动反相同步,在4.0<T*≤5.0时,两圆柱的振动不同步,T*≈4为两圆柱振动是否同步的临界间距比。
Based on CFD method, the vortex-induced vibration (VIV) of a single circular cylinder as well as two side-by-side arranged cylinders are investigated. Present results for the single cylinder show that the lock-in area is 4.8<UR<7.6, at where the vortex-shedding frequency is locked by the nature frequency of structure, and the dimensionless amplitude of structure dramatically increases due to the in-phase of the displacement and lift coefficient. At the boundary of the lock-in area, the beating vibration occurs as the vortex-shedding frequency cannot be totally locked by the natural frequency of the structure. Present results for the two side-by-side arranged circular cylinders show that the time for the flow to reach steady gets longer with the increase of space ratio. The vibration response of two cylinders are synchronous at 3.0≤T*≤4.0 and nonsynchronous at 4.0<T*≤5.0. The critical value of synchronous is at T*≈4.
2020,42(7): 49-53 收稿日期:2019-07-19
DOI:10.3404/j.issn.1672-7649.2020.07.010
分类号:O321
作者简介:林凌霄(1997-),男,硕士研究生,研究方向为海洋立管的涡激振动
参考文献:
[1] 潘志远, 崔维成, 张效慈. 细长海洋结构物涡激振动研究综述(英文)[J]. 船舶力学, 2005(06): 135-154
[2] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Columbia: Department of Mechanical Engineering, University of British Columbia, 1968.
[3] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472
[4] WILLIAMSON C H K, JAUVTIS N. A high-amplitude 2T mode of vortex-induced vibration for a light body in motion[J]. European Journal of Mechanics - B/Fluids, 2004, 23(1): 107-114
[5] JAUVTIS N, WILLIAMSON C H K. Vortex-induced vibration of a cylinder with two degrees of freedom[J]. Journal of Fluids and Structures, 2003, 17: 1035-1042
[6] GABBA R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound Vibration, 2005, 282(3-5): 575-616
[7] WILLIAMSON C H K, GOBARDHAN R. A brief review of recent results in vortex-induced vibration[J]. Journal of Wind Engineering Industrial Aerodynamics, 2008, 96(6-7): 713-735
[8] BEARMAN P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids Structure, 2001, 27(5-6): 648-658
[9] ZARAVKOVICH M M. Review of flow interference between two circular cylinders in various arrangements. ASME Journal of Fluids Engineering, 1977, 99: 618-633.
[10] ZARAVKOVICH M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound Vibration, 1985, 101(4): 511-521
[11] CHEN S. A review of flow-induced vibration of two circular cylinders in crossflow[J]. Journal of pressure vessel technology, 1986, 108(4): 382-393
[12] 姚熊亮, 陈起富, 徐文景. 均匀流场串列圆柱涡激振动特性的实验研究[J]. 振动工程学报, 1994(01): 17-22
[13] 陈文曲, 任安禄, 邓见. 双圆柱绕流诱发振动的数值模拟(Part I横向振动)[J]. 空气动力学学报, 2005(04): 442-448
[14] 徐晓黎, 及春宁, 张力, 等. 层流条件下并列三圆柱涡激振动响应与尾流形态[J]. 计算力学学报, 2018, 35(05): 643-649
[15] 秦伟, 康庄, 孙丽萍, 等. 并列双圆柱涡激振动的经验性模型研究[J]. 海洋工程, 2013, 31(02): 11-18
[16] 盛磊祥, 陈国明. 海洋并列立管涡激振动参数分析[J]. 石油矿场机械, 2011, 40(03): 5-8
[17] 何鸿涛. 圆柱绕流及其控制的数值模拟研究[D]. 北京: 北京交通大学, 2009.
[18] 黄智勇, 潘志远, 崔维成. 两向自由度低质量比圆柱体涡激振动的数值计算[J]. 船舶力学, 2007(01): 1-9
[19] LIENHARD J H. Synopsis of lift, drag and vortex trail dynamics[J]. Physics of Fluids, 1966, 30: 991-998
[20] ACHENBACH E, HEINECKE E. On vortex shedding from smooth and rough cylinders in the Reynold numbers from 6×103 to 5×106[J]. Journal of Fluids Mechanics, 1981, 109: 239-251
[21] 刘爽. 低雷诺数下并列圆柱涡激振动的数值模拟及其机理研究[D]. 天津: 天津大学, 2014.