为了降低通海管路系统对水动力噪声的影响,本文选取排出口为研究对象,采用仿真软件Ansys Workbench建立几何模型,划分网格,进行声学数值仿真计算。提出排出口结构优化设计思路,分析了不同结构形式的排出口对声学特性的影响,最终得出排出口优化结构。结果表明,在有无外流场条件下,排出口优化结构的声学特性均明显优于其原始结构的声学特性,表明排出口优化结构具有较好的降噪效果。
In order to reduce the influence of hydrodynamic noise for sea opening pipeline system, the discharge port was schosen, the geometric model was established, and the mesh was divided, then the numerical simulation was carried out by Ansys Workbench. The structure optimization idea of discharge port was pointed out. The influence of acoustic characteristics for different discharge ports was analyzed. Finally, the optimal structure for discharge port was obtained. The results indicated that the acoustic characteristics of optimal structure for discharge port were super to the acoustic characteristics of original structure. It showed whether is the condition of outer flow field or not, the optimal structure for discharge port has obvious effect of reducing hydrodynamic noise.
2020,42(7): 54-58 收稿日期:2019-09-17
DOI:10.3404/j.issn.1672-7649.2020.07.011
分类号:U661.42
基金项目:海装综合隐身配套科研项目
作者简介:张生乐(1983-),工程师,研究方向为船舶管路系统振动与噪声控制
参考文献:
[1] 柯兵, 周进华. 低噪声管路系统设计研究[J]. 舰船科学技术, 2006, 28(S2): 117-120
KE Bing, ZHOU Jinhua. Research on low noise design of piping system[J]. Ship Science and Technology, 2006, 28(S2): 117-120
[2] 周维星, 姚熊亮, 傅晓军, 等. 舰船管路抗冲击分析的传递矩阵法[J]. 船舶力学, 2014, 18(10): 1244-1253
ZHOU Weixing, YAO Xiongliang, FU Xiaojun, et al. Application of transfer matrix methods in shock analysis of warship piping system[J]. Journal of Ship Mechanics, 2014, 18(10): 1244-1253
[3] 刘丙杰, 刘勇志, 王春健. 基于模糊定性仿真的舰船管路系统潜在路径分析[J]. 南京理工大学学报, 2011, 35: 77-81
LIU Bingjie, LIU Yongzhi, WANG Chunjian. Sneak path analysis of warship pipeline systems based on fuzzy qualitative simulation[J]. Journal of Nanjing University of Science and Technology, 2011, 35: 77-81
[4] 程广福, 张文平, 柳贡民, 等. 船舶水管路噪声及其控制研究[J]. 振动噪声控制, 2004, 24(2): 31-33, 44
CHENG Guangfu, ZHANG Wenping, LIU Gongmin, et al. The liquid-born noise and its control in water pipelines of ships[J]. Noise and Vibration Control, 2004, 24(2): 31-33, 44
[5] AMNO R S, DRAXLER G R. High-pressure steam flow in turbine by pass valve flow. Part1: valve flow[J]. Journal of Propulsion and Power, 2002, 18(3): 555-560
[6] LAUCHLE G C. Noise generated by asymmetric turbulent boundary-layer flow[J]. The Journal of the Acoustical Society of America, 1977, 61(3): 694-703
[7] 李再承, 侯国祥, 吴崇健. 管系湍流噪声辐射研究方法进展[J]. 中国舰船研究, 2007, 2(1): 34-39
LI Zaicheng, HOU Guoxiang, WU Chongjian. Research progress on sound radiation of turbulence in pipeline[J]. Chinese Journal of Ship Research, 2007, 2(1): 34-39
[8] 孙玉东, 王锁泉, 刘忠族, 等. 液-管耦合空间管路系统振动噪声的有限元分析方法[J]. 振动工程学报, 2005, 18(2): 149-154
SUN Yudong, WANG Suoquan, IIU Zhongzu, et al. Unified finite element method for analyzing vibration and noise in 3-D piping system with liquid--pipe coupling[J]. Journal of Vibration Engineering, 2005, 18(2): 149-154
[9] 徐建龙, 张盛, 潘国雄, 等. 舷侧阀通海口结构形式对声学性能的影响[J]. 中国舰船研究, 2016, 11(2): 90-97
XU Jianlong, ZHANG Sheng, PAN guoxiong, et al. The effect of the sea opening structure on the ship side on the structural acoustic characteristics[J]. Chinese Journal of Ship Research, 2016, 11(2): 90-97
[10] 童秉刚, 张炳暄, 崔尔杰. 非定常流与涡流运动[M]. 北京: 国防工业出版社, 1993.
[11] 张生乐. 管路舷侧阀排出口噪声控制工艺研究报告[R]. 武汉: 武昌船舶重工集团有限公司, 2017.