深V型艇作为一种优异的改良船型,明显改善了舰船的耐波性及航向稳定性,但由于横向剖面尖瘦,舱室容积相对较小,不利于武器设备的布置,而三体滑行艇作为新型艇型,拥有诸多优势,国内仍处于研究阶段,为了了解这种艇型相对于传统深V艇的优势大小,利用CFD软件从静水性能方向进行分析研究,从阻力、浮态、兴波及艇底压力分布角度来分析其优劣势,结果表明三体艇仅在$ F{r_{\nabla} } < 4.5$其阻力及浮态劣于深V艇,其他均处于优势,且随着航速提高优势将继续扩大。
As an excellent improved hull form, deep V hull form obviously improved the ship's seakeeping ability and course stability, but due to the thin transverse section, cabin volume is relatively small, which is not conducive to the layout of weapons and equipment. Tri-planning has many advantages as a new hull form which is still in the research stage. In order to understand the advantages of this type of hull form over traditional deep V hull form, using CFD software to analyze the resistance, buoyant, free-surface wave and the pressure of the ship bottom, the conclusion shows that tri-planning is inferior to deep V ship in resistance and buoyant only when the volume froude number is less than 4.5, but all the others are in the advantage, and the advantage will continue to expand as the speed increases.
2020,42(7): 70-73 收稿日期:2019-09-02
DOI:10.3404/j.issn.1672-7649.2020.07.015
分类号:U674.942
基金项目:工信部高技术船舶科研计划重大专项(17GFB-ZB02-194)
作者简介:李岩(1995-),男,硕士研究生,研究方向为船舶设计等
参考文献:
[1] 邵世民, 王云才, 梁永超, 等. 深V型艇与圆舭型艇的阻力和耐波性比较[J]. 上海交通大学学报, 1996, 30(12): 53-57
[2] 王硕, 苏玉民, 庞永杰, 等. 高速滑行艇CFD精度研究[J]. 船舶力学, 2013, 2013(10): 1107-1114
[3] 蒋一. 基于CFD的超高速三体滑行艇快速性分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[4] 王庆旭. 三体滑行艇阻力和稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[5] BAUDIC S F, WILLIAMS A N, KAREEM A. A two-dimensional numerical wave flume-partl: nonlinear wave generation, propagation, and absorption[J]. Journal of Offshore Mechanics and Arctic Engineering, 2001, 2001(123): 70-75
[6] RYU S, KIM M H, LYNETT P J. Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank[J]. Computational Mechanics, 2003, 2003(32): 336-346
[7] 章丽丽, 孙寒冰, 蒋一, 等. 三体滑行艇槽道的水气动力特性研究[J]. 哈尔滨工程大学学报, 2017, 38(1): 31-36
[8] RADOJCJC D, ZGRADIC A, KALAJDZIC M, et al. Resistance prediction for hard chine hulls in the pre-planing regime[J]. Polish Maritime Research, 2014, 21(2): 9-26
[9] 邹劲, 姬朋辉, 孙寒冰, 等. 网格因素对三体滑行艇阻力计算影响探究[J]. 船舶, 2016, 03: 8-14
[10] FAIRLIE-CLARKE A. C., TVEITNES T. M CFD analysis and experimental work on water impact forces on transverse sections of planning craft[J]. Ocean Engineering, 2008, 35(7): 706-716
[11] 朱珉虎. 高速艇与游艇设计手册[M]. 珠海: 珠海出版社, 2009.
[12] Yu-min SU, Shuo WANG, Hai-long SHEN, et al. Numerical and experimental analyses of hydrodynamic performance of a channel type planing trimaran[J]. Journal of Hydrodynamics, 2014, 26(4): 549-557
[13] 赵发明, 高成君, 夏琼. 重叠网格在船舶CFD 中的应用研究[J]. 船舶力学, 2011(4): 332-341
[14] ROYK, BHARATS, RAJKESHAR S A. Comprehensive generalized mesh system for CFD application[J]. Mathe and Computers in Simulation, 2008, 78: 605-617
[15] 苏玉民, 王硕, 沈海龙. 三体槽道滑行艇阻力模型试验研究[J]. 哈尔滨工程大学学报, 2013, 34(7): 832-836
[16] SUN Huawei, HUANG Debo, ZOU Jin, et al. Experimental investigation on resistances from stepped trimaran planing boats[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40(1): 86-89