半潜式生活支持平台用于钻井平台生活及工程方面的支持,动力定位或系泊系统的失效都可能导致支持平台与钻井平台的碰撞。本文通过计及系泊系统作用下某半潜式生活支持平台与钻井平台的典型碰撞工况分析,对其碰撞特性进行了研究。利用Awqa-line模块得到系泊缆位移-载荷曲线,并在LS-Dyna软件中等效模拟出系泊缆对生活支持平台与钻井平台水平方向上的约束作用。利用Space Claim-HyperMesh软件联合建立了生活支持平台与钻井平台有限元模型,从碰撞速度、碰撞位置、参数设置等方面确定了生活支持平台与钻井平台的碰撞工况。从碰撞后速度、结构形变、碰撞力、能量转化等方面进行了对比分析,得出以下结论:系泊系统对平台的约束作用主要表现为平台运动的滞后效应,减缓了支持平台与钻井平台的速度变化,加快了碰撞区域结构的形变速度,造成了碰撞区域更大的结构变形。
Semi-submersible life support platforms are used for drilling platform living and engineering support. Invalid of the dynamic positioning or mooring system may lead to the collision between the support platform and the drilling platform. In this paper, the collision characteristics of a semi-submersible life support platform are studied by taking into account the typical collision condition analysis of a semi-submersible life support platform and a drilling platform under the action of mooring system. The mooring line displacement-load curve is obtained by using the Awqa-line module, and the restraining effect of the mooring line on the horizontal direction of the life support platform and the drilling platform is equivalently simulated in the LS-Dyna software. The SpaceClaim-HyperMesh software was used to establish the finite element model of the life support platform and the drilling platform. The collision conditions of the life support platform and the drilling platform are determined from the aspects of collision speed, collision position and parameter setting. From the comparison of post-collision speed, structural deformation, collision force and energy conversion, the following conclusions are drawn: the constraint effect of the mooring system on the platform is mainly the hysteresis effect of the platform motion, which slows down the speed change of the supporting platform and the drilling platform, accelerates the deformation speed of the collision zone structure, and causes greater structural deformation in the collision zone.
2020,42(7): 97-102 收稿日期:2019-08-17
DOI:10.3404/j.issn.1672-7649.2020.07.021
分类号:U661.43
基金项目:国家重点研发计划资助项目(No.2018YFC0310400);国家自然科学基金资助项目(51779109);江苏省自然科学面上基金资助项目(BK20171306);工信部高技术船舶资助项目;工信部国家重大科技专项资助项目
作者简介:谷家扬(1979-),男,博士,教授,研究方向为海洋工程
参考文献:
[1] 赵战华. 深水半潜式平台张紧式系泊性能研究[D]. 青岛: 中国海洋大学, 2011.
[2] 张维. 深水平台锚泊系统锚索链受力分析及视景仿真[D]. 武汉: 武汉理工大学, 2014.
[3] ALSOS H S, AMDAHL J. On the resistance to penetration of stiffened plates, Part I-Experiments[J]. International Journal of Impact Engineering, 2009, 36(6): 799-807
[4] ALSOS H S, AMDAHL J, HOPPERSTAD O S. On the resistance to penetration of stiffened plates, Part II: Numerical analysis[J]. International Journal of Impact Engineering, 2009, 36(7): 875-887
[5] BULDGEN L, SOURNE H L, BESNARD N, et al. Extension of the super-elements method to the analysis of oblique collision between two ships[J]. Marine Structures, 2012, 29(1): 22-57
[6] Yifeng M, Weiqing L, Ding Z, et al. Stiffness simplified model of bow in ship bridge collision[J]. Journal of Nanjing Tech University(Natural Science Edition), 2015
[7] CHAO J, ZHIQIANG H U, KUN L, et al. A simplified analytical method for collision resistance of tubular members of jacket platform[J]. Engineering Mechanics, 2017
[8] 金伟良, 宋剑, 龚顺风. 船舶与海洋平台撞击的荷载模拟[J]. 计算力学学报, 2004, 21(1): 26-32
[9] HU Z, LIU Z, AMDAHL J. Collision character research for semi-submersible through model test, simplified analytical and numerical simulation method[C]// ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2010: 251-259.
[10] ROBSON J K. Ship/platform collision incident database(2001)[R]. Health and Safety Executive, 2003: 212-215.
[11] LEHMANN E, JÖRG PESCHMANN. Energy absorption by the steel structure of ships in the event of collisions[J]. Marine Structure, 2002, 15(4): 429-441