针对水中目标水声信号探测和姿态感知三维复合同振式矢量水听器应用需求,设计了一种应用于水声信号探测的水下声学滑翔机系统,该系统具有噪声低、效费比高、成本低、维护费用低、可重复使用等特点,可采用剖面滑翔方式采集环境噪声及移动目标辐射噪声信息。水下声学滑翔机声学探测分系统数据采集与实时分析单元采用FPGA+DSP架构的设计方案,控制姿态传感器实时采集矢量水听器姿态信息,完成水声信息、姿态信息联合信号处理。试验结果表明,水下声学滑翔机声学系统可在100~3000Hz范围内采集水声信号,深海良好水文环境条件,采用剖面滑翔工作模式,对船长42 m、船宽6 m、航速8.4 kn水面航船探测距离≥7.8 km。
Underwater acoustic glider, target underwater acoustic signal detection in water and gestures sense of three dimensional composite with vector hydrophone of co-vibrating type application requirements, design a kind of application in underwater acoustic signal detection of underwater acoustic glider system, the system has low noise, high cost-effectiveness ratio, low cost, low maintenance cost and reusable, profile gliding way can be used to collect information environment noise and moving target radiated noise.The data acquisition and real-time analysis unit of the acoustic detection sub-system of the underwater acoustic glider adopts the design scheme of FPGA+DSP architecture to control the attitude sensor to collect the attitude information of the vector hydrophone in real time and complete the joint signal processing of the underwater acoustic information and attitude information.The test results show that the acoustic system of the underwater acoustic glider can collect underwater acoustic signals within a range of 100~3000Hz. In the deep sea, the hydrology environment is favorable, and the working mode of profile gliding is adopted to detect the vessel with a length of 42 meters, a width of 6 meters and a speed of 8.4 water-saving surface. The vessel's detection distance is ≥7.8 kilometers.
2020,42(7): 160-164 收稿日期:2019-11-30
DOI:10.3404/j.issn.1672-7649.2020.07.033
分类号:TB565+.1
基金项目:国家自然科学基金资助项目(2019YFC030313);青岛科译科学与技术试点国家实验室问海计划资助项目(2017WHZZB06)
作者简介:孙芹东(1986-),男,硕士,助理研究员,研究方向为声矢量传感器及其应用技术、水下无人探测装备
参考文献:
[1] 杨亚楠. 温差能-电能混合驱动水下滑翔机系统设计与性能分析[D]. 天津: 天津大学, 2017.
[2] 雷智. 基于水下滑翔机的海洋微结构测量技术平台研究[D]. 天津: 天津大学, 2016.
[3] 牛文栋. 混合驱动水下滑翔机稳定性控制与路径规划研究[D]. 天津: 天津大学, 2016.
[4] 笪良龙, 孙芹东, 王文龙, 等. 基于MEMS姿态传感器的声矢量传感器设计[J]. 中国惯性技术学报, 2016, 24(4): 531-536
[5] 孙芹东, 笪良龙, 侯文姝, 等. 一种新型姿态实时修正矢量水听器的设计[J]. 声学技术, 2015, 34(2): 304-307
[6] MATSUMOTO H, STALIN S E, EMBLEY R W, et al. Hydroacoustics of a submarine eruption in the Northeast Lau Basin using an acoustic glider[C]//OCEANS 2010. IEEE, 2010: 1-6.
[7] WOOD S. Autonomous underwater gliders[J]. Underwater Vehicles, 2009: 499-524
[8] GERALD L D, JENKINS S A, ZIMMERMAN R, ET AL. Underwater acoustic measurements with the Liberdade/X‐Ray flying wing glider[J]. The Journal of the Acoustical Society of America, 2005, 117(4): 2624-2624
[9] 王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[J]. 声学技术, 2018, 37(5): 84-87
[10] 王超, 孙芹东, 兰世泉, 等. 水下声学滑翔机目标探测性能南海试验分析[J]. 声学技术, 2018, 37(6): 149-150
[11] MASSOUD A, OSMAN A, NOURELDIN A. DOA estimation based on fourth order cumulant beamforming for nonuniform linear array of DIFAR sonobuoys[J]. Computers and Electrical Engineering, 2012, 38(4): 986-993
[12] KIM K, GABRIELSON T B, LAUCHLE G C. Development of an accelerometer-based underwater acoustic intensity sensor[J]. Journal of the Acoustical Society of America, 2004, 116(6): 3384-3392
[13] BARNARD A R, HAMBRIC S A. Design and implementation of a shielded underwater vector sensor for laboratory environments[J]. Journal of the Acoustical Society of America, 2011, 130(6): EL387-391
[14] 笪良龙, 王文龙, 孙芹东, 等. 一种微型矢量水听器姿态测量系统[J]. 中国惯性技术学报, 2016, 24(1): 20-25
[15] 时胜国, 于树华, 时洁, 等. 矢量拖线阵水听器流噪声响应特性[J]. 物理学报, 2015, 64(15): (154306-1)-(154306-10)
[16] 沈泥鑫. MEMS矢量水听器及其阵列应用于声呐浮标的关键技术研究[D]. 太原: 中北大学, 2019.