潜艇舱室环境中无机气体污染物的影响不容忽视,而现有的净化处理技术难以完全达到目前的气体净化标准要求。因此,本文对舱室环境中几种主要的无机气体污染物CO2,NOx、SO2和H2S的处理技术研究发展历程和现状进行综述分析,为舱室环境空气的净化处理提供理论指导。
The influence of inorganic gas pollutants in submarine cabin environment cannot be ignored, and the existing purification technology is difficult to fully meet the current gas purification standards. Therefore, this paper summarized and analyzed the development history and current situation of several major inorganic gas pollutants CO2, NOx, SO2 and H2S in cabin air, with a view to providing theoretical guidance for the purification of submarine cabin air in the future.
2020,42(8): 13-18 收稿日期:2020-04-02
DOI:10.3404/j.issn.1672-7649.2020.08.003
分类号:TB61
作者简介:蔡朋(1983-),男,硕士研究生,工程师,从事船舶系统、轮机工程的研究
参考文献:
[1] 史德, 苏广和, 李震. 潜艇舱室空气污染与治理技术[M]. 北京: 国防工业出版社, 2005.
[2] 王朋辉, 倪伟, 颜欢, 等. 潜艇舱室空气处理技术研究进展[J]. 船舶工程, 2015, 37(12): 1-4
[3] DIBBEN P R, NICHOLSON G. Managing air quality and setting exposure limits for RN submarines[R]. SAE Technical Paper, 2000.
[4] GB341748. Process for the absorption of carbon-dioxide from gases and vapors[P]. 1931.
[5] GB286622. Process for removing readily absorbed gases, more particularly carbon dioxide and sulphuretted hydrogen, from gas mixtures by absorption in water under pressure[P]. 1929.
[6] US4112052. Process for removing carbon dioxide containing acidic gases from gaseous mixtures using aqueous amine scrubbing solutions[P]. 1978.
[7] JP61133118. Polyimide membrane for gas separation[P]. 1986.
[8] US6503295. Gas separations using mixed matrix membranes[P]. 2003.
[9] US6562110. Carbon molecular sieves and methods for making the same[P]. 2003.
[10] US7306647. Mixed matrix membrane with mesoporous particles and methods for making and using the same[P]. 2007.
[11] JI Y, TOOPS T J, GRAHAM U M, et al. A kinetic and DRIFTS study of supported Pt catalysts for NO oxidation[J]. Catalysis Letters, 2006, 110(1-2): 29-37
[12] DEBEILA M A, COVILLE N J, SCURRELL M S, et al. The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2: Drifts studies[J]. Applied Catalysis A General Catalysis by Gold, 2005, 291(1-2): 98-115
[13] LI L, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties[J]. applied catalysis b environmental, 2010, 93(3-4): 259-266
[14] NARULA C K, ALLARD L F, WU Z. Ab initio density functional calculations and Infra-Red study of CO interaction with Pd atoms on θ-Al2O3(010) surface[J]. Scientific Reports, 2017, 7(1): 6231
[15] ZHANG D, WEN M, ZHANG S, et al. Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation[J]. Applied Catalysis B Environmental, 2014, 147: 610-616
[16] WANG P, LUO P, YIN J, et al. Evaluation of NO oxidation properties over a Mn-Ce/γ-Al2O3 Catalyst[J]. Journal of Nanomaterials, 2016(1): 1-5
[17] LI X, ZHANG S, JIA Y, et al. Selective catalytic oxidation of NO with O2 over, Ce-doped MnOx/TiO2 catalysts[J]. Journal of Natural Gas Chemistry, 2012, 21(1): 17-24
[18] SUN Y, ZHONG S, XIN H, et al. Enhancement in oxidative property on amorphous rare earth doped Mn catalysts[J]. Catalysis Communications, 2016, 77: 94-97
[19] ZIAEI-AZAD H, KHODADADI A, ESMAEILNEJAD-AHRANJANI P, et al. Effects of Pd on enhancement of oxidation activity of LaBO3(B=Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles[J]. Applied Catalysis B Environmental, 2011, 102(1-2): 62-70
[20] ESMAEILNEJAD-AHRANJANI P, KHODADADI A, ZIAEI-AZAD H, et al. Effects of excess manganese in lanthanum manganite perovskite on lowering oxidation light-off temperature for automotive exhaust gas pollutants[J]. Chemical Engineering Journal, 2011, 169(1-3): 282-289
[21] KIM C H, QI G, DAHLBERG K, et al. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust[J]. Science, 2010, 327(5973): 1624-1627
[22] WANG W, MCCOOL G, KAPUR N, et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust[J]. Science, 2012, 337(47): 832-835
[23] MIYAWAKI J, SHIMOHARA T, SHIRAHAMA N, et al. Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature[J]. Applied Catalysis B Environmental, 2011, 110: 273-278
[24] DING J, ZHONG Q, ZHANG S, et al. Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2[J]. Chemical Engineering Journal, 2014, 243: 176-182
[25] SHEN W, FAN W. Nitrogen-containing porous carbons: synthesis and application[J]. Journal of Materials Chemistry A, 2013, 1(4): 999-1013
[26] MOCHIDA I, SHIRAHAMA N, KAWANO S, et al. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area[J]. Fuel, 2000, 79(14): 1713-1723
[27] SRIVASTAVA R K, JOZEWICZ W. Flue gas desulfurisation: the state of the art[J]. Journal of Air and Waste Management Association, 2001(51): 1676-1688
[28] GUO L, SHU Y, GAO J. Present and future development of flue gas control technology of deNO_X in the world[J]. Energy Procedia, 2012, 17: 397-403
[29] FANG P, CEN C, TANG Z, et al. Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution[J]. Chemical Engineering Journal, 2011, 168(1): 52-59
[30] WEI J, LUO P, YU P, et al. Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(1): 16-22
[31] ATANES E, NIETO-MARQUEZ A, Cambra A, et al. Adsorption of SO2 onto waste cork powder-derived activated carbons[J]. Chemical Engineering Journal, 2012, 211-212: 60-67
[32] DAHLAN I, LEE K T, KAMARUDIN A H, et al. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal[J]. Journal of Hazardous Materials, 2009, 166(2-3): 1556-1559
[33] LAU L C, LEE K T, MOHAMED A R. Simultaneous SO2 and NO removal using sorbents derived from rice husks: An optimisation study[J]. Fuel, 2011, 90(5): 1811-1817
[34] SUMATHI S, BHATIA S, LEE K T, et al. Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO-Process study[J]. Chemical Engineering Journal, 2010, 162(1): 51-57
[35] CHMIELEWSKI A G. Industrial applications of electron beam flue gas treatment-From laboratory to practice[J]. Radiation Physics and Chemistry, 2007, 76: 1480-1484
[36] CALINESCU I, MARTIN D, CHMIELEWSKI A, et al. E-Beam SO2 and NOx removal flue gases in the presence of fine water droplets[J]. Radiation Physics and Chemistry, 2013, 85: 130-138
[37] HUANG T J, WANG C H. Effect of temperature and NOx concentration on nitric oxide removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells[J]. Chemical Engineering Journal, 2011, 173(2): 530-535
[38] MOK Y S, HAM S W. Conversion of NO to NO2 in air by a pulsed corona discharge process[J]. Chemical Engineering Science, 1998, 53: 1667-1678
[39] MOK Y S, NAM I S. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide[J]. Chemical Engineering Journal, 2002, 85(1): 87-97
[40] VINOGRADOV J, RIVIN B, SHER E. NOx reduction from compression ignition engines with pulsed corona discharge[J]. Energy, 2008, 33(3): 480-491
[41] WU Y, WANG N, ZHU Y, et al. SO2 removal from industrial flue gases using pulsed corona discharge[J]. Journal of Electrostatics, 1998, 44(1-2): 11-16
[42] GABRIEL D, DESHUSSES M A. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control[J]. Proceedings of the National Academy of Sciences, 2003, 100(11): 6308-6312
[43] BANDOSZ T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science, 2002, 246(1): 1-20
[44] BAGREEV A, RAHMAN H, BANDOSZ T J. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent[J]. Carbon, 2001, 39(9): 1319-1326
[45] NHUT J M, VIEIRA R, PESANT L, et al. Synthesis and catalytic uses of carbon and silicon carbide nanostructures[J]. Catalysis Today, 2002, 76(1): 11-32
[46] ELSEVIERS W F, VERELST H. Transition metal oxides for hot gas desulphurisation[J]. Fuel, 1999, 78(5): 601-612
[47] WESTMORELAND P R, HARRISON D P. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases[J]. Environmental Science and Technology, 1976, 10(7): 659-661
[48] MELO D M A, SOUZA J R D, MELO M A F, et al. Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272(1-2): 32-36