在波纹夹层板微振动时,认为面板不仅承受弯曲作用,还承受剪切作用;心层承受剪切作用,同时仅承受波纹母线方向的弯曲作用。在夹层板的上下面板和心层分别应用一阶Zig-Zag理论,根据波纹心层的具体形状,列出夹层板的几何方程。通过Hamilton原理,建立夹层板的微振动微分方程。根据边界条件,用双傅里叶级数的方法求解方程,确定特征值,求得夹层板的振动频率。经过算例验证,该方法计算的前8阶固有频率与有限元法或其他文献结果相吻合。
It is taken into account that corrugated core face sheets endure not only bending but also shearing, and core endure bending along corrugation generating line direction as well as shearing along double directions when the corrugated core panel tiny vibrates. Based on the core practical shape, geometry equations were demonstrated by applying first order Zig-zag theory to upper and lower face sheet and core. Tiny vibration diffrential equations were established according to Hamilton principle. Eigenvalue was determined and vibration frequency was calculated by solving the equations using double Fourier series according to boundary conditions. In the calculation example, the results of the first to eight order frequency of this proposal method are of good agreement with FEM or other literatures.
2020,42(8): 26-31 收稿日期:2019-11-06
DOI:10.3404/j.issn.1672-7649.2020.08.005
分类号:O327
基金项目:中国船舶重工集团公司联合基金项目(1B04010101);中国舰船研究设计中心研发基金项目(3130101)
作者简介:王小明(1981-),男,博士研究生,高级工程师,从事船舶结构设计与研究
参考文献:
[1] KNOX.E.COWLING.M, M.J Adhesively bonded steel corrugated core sandwich construction for marine application[J]. Marine Structure, 1998(11): 185-204
[2] Ye YU, Wen-bin Hou. Elastic constants for adhesively bonded corrugated core sandwich panels[J]. Composite Structures, 2017(176): 449-459
[3] KUJALA.P, ROMANOFF. J . All steel sandwich panels - design challenges for practical applications on ships[C]. 9th Symposium on Practical Design of Ships and Other Floating Structures.
[4] RAJAPAKSE Y D S, HUI D. Marine composite and sandwich structures[J]. Composites: Part B, 2008, 39: 1-4
[5] 中科院北京力学研究所. 夹层板的弯曲稳定和振动[M]. 北京: 科学出版社, 1977.
[6] 吴晖, 俞焕然. 四边简支正交各向异性波纹型夹心矩形夹层板的固有频率[J]. 应用数学和力学, 2001, 22(9): 919-926
WU Hui, Yu Huan-ran. Natural frequency for rectangular orthotropic corrugated_core sandwich plates with all edges simply_supported[J]. Applied Mathematics and Mechanics, 2001, 22(9): 919-926. (in Chinese)
[7] ZAMANIFAR H, SARRAMI-FOROUSHANI S, et al. Static and dynamic analysis of corrugated-core sandwich plates using finite strip method[J]. Engineering structures, 2019(183): 30-51
[8] ICARD U, SOLA F. Assessment of recent Zig-Zag theories for laminated and sandwich structure[J]. Composites Part B, 2019(97): 26-52
[9] FANG Taoxie, Yegao QU, et al. Nolinear areothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory[J]. International Journal of Mechanical Sciences, 2019(150): 226-237
[10] AZHARI F, BOROOMAND B, et al. Exponential basis function in the solution of laminated plates using a higer-order Zig-Zag theory[J]. Composite Structures, 2013(105): 398-407
[11] 白瑞祥, 张志锋, 陈浩然. 基于Zig-Zag变形假定的复合材料夹层板的自由振动[J]. 力学季刊, 2004, 25(4): 528-534
BAI Rui-xiang, ZHANG Zhi-feng, CHEN Hao-ran. Free vibration of composite sandwich plates based on Zig-Zag deformation assumption[J]. Chinese Quarterly of Mechanics, 2004, 25(4): 528-534. (in Chinese)
[12] 何力. 船舶板架结构动力优化设计方法研究[D]. 武汉: 华中科技大学. 2011.
HE Li. Dynamic Optimization of Ship Grillages[D]. Wuhan: Huazhong University of Science and Technology. 2011.
[13] Hong-xia WANG, SAMUEL W.Chung. Equivalent elastic constants of truss core sandwich plates[J]. Journal of Pressure Vessel Technology, 2011(133): 041203-1-041203-6