本文基于轴对称结构在非轴对称激励情况下的变分理论,在有限元仿真软件中构建了旋转柱壳结构的二维声散射特性分析模型,将三维空间问题转变为二维平面问题,提高了计算效率。首先计算带帽圆柱壳的声散射并与文献中三维模型计算结果进行对比,结果拟合较好,说明本文二维轴对称有限元法的准确性与适用性;随后基于本方法研究水下周期加筋圆柱壳声散射特性(包括单壳体与双壳体两种形式),并通过与三维模型进行计算效率的对比分析,阐明该方法的高效性。
Based on the variational theory of axisymmetric structures under non-axisymmetric excitations, a two-dimensional sound scattering characteristic analysis model of a rotating cylindrical shell structure is constructed in the finite element simulation software, which transforms three-dimensional spatial problems into two-dimensional planar problem and improves calculation efficiency. In this paper, the acoustic scattering of a capped cylindrical shell is first calculated and compared with the calculation results of the three-dimensional model in the literature. The results fit well, which illustrates the accuracy and applicability of the two-dimensional axisymmetric finite element method in this paper. Then, based on this method, the acoustic scattering characteristics of the underwater periodic stiffened cylindrical shell (including single shell and double shell structures) are studied, and the efficiency of the method is illustrated by comparing and analyzing the calculation efficiency with the three-dimensional models.
2020,42(8): 55-59 收稿日期:2019-12-30
DOI:10.3404/j.issn.1672-7649.2020.08.010
分类号:O42
作者简介:周子翔(1995-),男,硕士研究生,主要从事船舶结构声学及计算声学方法研究
参考文献:
[1] 汤渭霖. 用物理声学方法计算非硬表面的声散射[J]. 声学学报, 1993(1): 45-53
[2] 汤渭霖. 用物理声学方法计算界面附近目标的回波[J]. 声学学报, 1999(1): 1-5
[3] 范威, 范军, 陈燕. 浅海波导中目标散射的简正波-Kirchhoff近似混合方法[J]. 声学学报, 2012(05): 13-21
[4] NUMRICH, S. K Scattering of acoustic waves by a finite elastic cylinder immersed in water[J]. The Journal of the Acoustical Society of America, 1981, 70(5): 1407-1411
[5] MACKOWSKI D W, MISHCHENKO M I. Calculation of the T matrix and the scattering matrix for ensembles of spheres[J]. Journal of the Optical Society of America A, 1996, 13(11): 2266-2278
[6] WANG, Shuozhong. Finite-difference time-domain approach to underwater acoustic scattering problems[J]. The Journal of the Acoustical Society of America, 1996, 99(4): 1924-1931
[7] TEZAUR R, MACEDO A, FARHAT C, et al. Three-dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries[J]. International Journal for Numerical Methods in Engineering, 2002, 53(6): 1461-1476
[8] ISAKSON M J, CHOTIROS N P. Finite element modeling of acoustic scattering from fluid and elastic rough interfaces[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 475-484
[9] ESPANA A L, WILLIAMS K L, PLOTNICK D S, et al. Acoustic scattering from a water-filled cylindrical shell: Measurements, modeling, and interpretation[J]. The Journal of the Acoustical Society of America, 2014, 136(1): 109-121
[10] RAJABI M, AHMADIAN M T, JAMALI J. Acoustic scattering from submerged laminated composite cylindrical shells[J]. Composite Structures, 2015, 128: 395-405
[11] ZAMPOLLI M, TESEI A, JENSEN F B, et al. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects[J]. The Journal of the Acoustical Society of America, 2007, 122(3): 1472-1485
[12] 胡珍, 范军, 张培珍, 等. 水下掩埋目标的散射声场计算与实验[J]. 物理学报, 2015, 65(6)
[13] 张培珍, 李秀坤, 范军, 等. 局部固体填充的水中复杂目标声散射计算与实验[J]. 物理学报, 2016, 65(18): 273-281