采用直接求解流动控制方程的CFD方法对高压气底吹进气吹除主压载水舱过程进行分析。获取吹除过程关键参数,着重分析通海孔面积、气源压力对吹除过程的影响,探索高压吹除过程一般性规律。底吹进气高压气出流方向与通海孔水流方向相反,高压气由通海孔泄漏较少;通海孔面积越大,气源压力越高,吹除用时越短;通海孔面积的增加可以有效减少吹除过程中的高压气消耗,对降低主压载水舱内的压升也有显著作用,通海孔面积增大2倍,3种工况下主压载水舱内的最大压升分别减小0.01 MPa,0.10 MPa和0.15 MPa;吹除过程中高压吹除管路出口气流速度可达1Ma以上,管路出口段的温降也明显大于管路入口段,应将不耐低温的阀门和仪表布置在管路入口段附近。
The blowing process of high pressure air entering from the bottom of the main ballast tank is analyzed by CFD method which directly solves the flow control equation. To explore the general law of high pressure blowing process, the key parameters of blowing process are obtained and the influence of sea opening area and air source pressure on the blowing process is mainly analyzed. The direction of high pressure air outflow is opposite to the direction of water flow through the sea opening in the process of bottom blowing. Therefore, the high pressure air leakage from the sea opening is less. The blow-out time decreases with the increase of sea opening area and air source pressure. The increase of the sea opening area can effectively reduce the consumption of high pressure air and has a significant effect on reducing the pressure rise in the main ballast tank. The maximum pressure rise in the main ballast tank decreases by 0.01 MPa, 0.10 MPa and 0.15 MPa respectively when the area of sea opening increases by two times. In the blowing process, the airflow velocity can be accelerated to more than 1Ma at pipe outlet, and the temperature drop at pipe outlet is also significantly greater than that at pipe inlet, which indicates that low-temperature resistant values and instruments should be placed near the pipe inlet.
2020,42(8): 60-63 收稿日期:2019-09-16
DOI:10.3404/j.issn.1672-7649.2020.08.011
分类号:U674.76
作者简介:羿琦(1993-),男,硕士,工程师,主要从事高压空气与潜浮系统研究、设计工作
参考文献:
[1] 李其修, 刘辉, 吴向君. 基于CFD的潜艇高压气吹除主压载水舱系统模拟[J]. 舰船科学技术, 2012(9): 56-60
[2] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的理论分析及实验验证[J]. 北京航空航天大学学报, 2009, 35(4): 411-416
[3] 杨晟, 余建祖, 程栋, 等. 潜艇应急燃气吹除过程的数值仿真及实验验证[J]. 北京航空航天大学学报, 2010, 36(2): 227-230
[4] 刘辉, 浦金云, 李其修, 等. 潜艇高压气吹除主压载水舱系统实验研究[J]. 哈尔滨工程大学学报, 2013, 34(1): 34-39
[5] 刘辉, 李其修, 吴向君, 等. 潜艇高压气吹除系统流量模型的构建与实验分析[J]. 舰船科学技术, 2015, 37(10): 52-55
[6] 王晓峰, 王先洲, 张志国. 考虑重力影响的高压气体吹除改进数理模型和试验对比分析[J]. 中国舰船研究, 2014, 9(6): 80-86
[7] 王晓峰. 高压气吹除数理模型及CFD仿真分析[D]. 武汉: 华中科技大学, 2015.
[8] 吴俊松. 基于CFD的液舱高压吹除数值研究[D]. 武汉: 华中科技大学, 2013.
[9] 张建华, 胡坤, 刘常波. 潜艇高压气吹除主压载水舱过程的数值模拟[J]. 船舶力学, 2015, 19(4): 363-368
[10] 张建华, 杨伟, 徐亦凡. 基于Fluent的潜艇高压气排水速率深度影响研究[J]. 舰船科学技术, 2013, 35(11): 34-37