本文探讨了目标船在随机海浪干扰下的喷流舵减摇控制问题。首先,介绍喷流舵流体动力特性,并通过内插值获取理想线性控制输入。将水面船舶4自由度非线性耦合模型简化为3自由度直航线性模型,并针对单舵舵减摇控制问题,提出基于线性模型的分频线性二次型最优控制方法,构建了航向/横摇综合控制仿真数学模型。最后,在不同工况进行喷流舵控制对比仿真研究。结果表明,喷流舵在航向/横摇控制性能上可以获取更优的效果。设计的分频线性二次型最优控制器具有较强的性能跟踪能力,并兼顾到控制成本。基于该控制方法的喷流舵控制对实际船舶航向横摇控制,尤其在低航速航行时的控制具有重要的参考价值。
In this paper, roll stabilization control of term vessel using jet rudder is investigated in the random sea waves. Firstly, the hydrodynamic characteristics of jet rudder are introduced, and the ideal control input is obtained by linear interpolation. Secondly, the four-degree-of-freedom non-linear coupling model of surface ship is simplified to three-degree-of-freedom linear model with direct navigation, and a frequency division linear quadratic regulation (FDLQR) control method based on the linear model is proposed to solve the rudder roll damping (RRD) problem of single rudder. The mathematical model of integrated control simulation is constructed. Finally, the comparative simulation of jet rudder control is carried out under under various conditions. The results show that the jet rudder can achieve better heading/rolling control performance. The designed FDLQR controller has strong performance of tracking ability, with consideration of control cost. The control using jet rudder based on FDLQR has important reference value for course and rolling control of the full scale ship, especially at low speed.
2020,42(8): 74-81 收稿日期:2019-07-10
DOI:10.3404/j.issn.1672-7649.2020.08.014
分类号:U661.3
作者简介:金仲佳(1981-),男,高级工程师,从事计量测试技术及船舶运动控制技术研究工作
参考文献:
[1] KIND R. J AND MAULL D. J An experimental investigation of a low-speed circulation-controlled aerofoil[J]. The Aeronautical Quarterly, 1968(5): 170-182
[2] CHEESEMAN I. C, FRAES and SEED A R. The application of circulation control by blowing to helicoter roor[J]. journal of the royal aeronautical society, 1966(71): 679
[3] ENGLAR R. J, HUSON G. G Development of advanced circulation control wing high-lift airfoils[J]. Journal of Airfoils. Journal of Aircraft, 1984, 21: 476-483
[4] 沈定安, 夏贤, 田于逵,等. 喷流舵水动力试验研究[J]. 船舶力学, 2005, 9(1): 51-56
[5] SON, K. H. and NOMOTO, K On the coupled motion of steering and rolling of a high speed container ship[J]. Naval Architects of Japan, 1981, 150: 232-244
[6] FOSSEN. Handbook of marine craft hydrodynamics and motion control[M]. 2011.
[7] TRISTAN P. Ship motion control course keeping and roll stabilization using rudder and fins[M]. Springer, 2005.
[8] COWLEY W E, LAMBERT T H. The Use of Rudder as a Toll Stabilizer[C]. Proceeding of SCSS’72, 2, Bath, UK, 1972(Ⅶ): C-1.
[9] VAN der KLUGT P F M. Rudder roll stabilization PhD thesis[D]. Netherlands Delft University of Technology, the1987.
[10] VAN A J, VAN der KLUGT P G M, VAN nauta. Lempke H R rudder roll stabilization for ships[J]. Automatic AUT, 1990(4): 679-690
[11] LAUVDAL T, FOSSEN T I. Rudder roll stabilization of ship subject to input rate saturation using a gain scheduled control law[C]. Proceeding of CAMS’98, Fukuoka. Japan. 1998: 121-126.
[12] BLANKE M, HAALS P, ANDREASEN K K. Rudder roll damping experience in demark[C]. Proceeding of CAMS’89 Lyngby, Denmark, 1989: 149-160.
[13] PEREZ T, TZENG C Y, GOODWIN G C. Model predictive rudder roll stabilization control for ships[C]. Proceeding of MCMC 2000, Aalborg Denmark, 2000: 39-44.
[14] BLANKEM, et al. Rudder roll damping in coastal region sea conditions[C]. Proceeding of MCMC’2000, Aalborg Denmark, 2000: 45-50.