储运LNG船舶在航行中受外界环境影响,储槽内LNG液体出现晃荡,以及储槽维护结构的漏热,使得储罐内温度和压力变化,LNG出现相变,导致LNG的耗损及安全隐患。针对在晃荡和外界漏热影响下船舶LNG储槽热质传递过程,利用气-液两相VOF模型,建立了描述LNG储槽热动响应的数学模型,分析了在不同外部漏热、晃荡幅度和储槽内LNG液位高度下,储槽内LNG损耗及其热质传递特性,以及 LNG储槽内自由液面波动。随着外部漏热上升,振幅和频率增加,使得LNG气相区压力增加和LNG损耗率增大,并随槽内LNG液位降低时,其增加的幅度相对较大。本文分析结果,可为优化船舶LNG储槽结构和LNG储槽的运行管理提供一定理论指导。
The LNG ship is affected by the external environment during the voyage, the sloshing of the LNG liquid in the storage tank, and the leakage heat of the maintenance structure of the storage tank, which causes the temperature and pressure in the storage tank to change, and the phase change of LNG leads to the loss of LNG and the safety hazard.. Aiming at the heat and mass transfer process of LNG storage tanks under the influence of sloshing and external heat leakage, a gas-liquid two-phase VOF model was used to establish a mathematical model describing the thermal response of LNG storage tanks, and the leakage and sloshing amplitudes in different externalities were analyzed. And the LNG loss and its heat and mass transfer characteristics in the storage tank and the free surface fluctuation in the LNG storage tank under the height of the LNG liquid level in the storage tank. As the external leakage heat rises, the amplitude and frequency increase, so that the LNG gas zone pressure increase and the LNG loss rate increase, and the increase rate is relatively large as the LNG liquid level in the tank decreases. The analysis results in this paper can provide some theoretical guidance for optimizing the operation of LNG storage tank structure and LNG storage tank.
2020,42(8): 82-87 收稿日期:2019-09-28
DOI:10.3404/j.issn.1672-7649.2020.08.015
分类号:U662.2
基金项目:上海市教委创新计划(14ZZ142)
作者简介:钱希鸿(1994-),男,硕士研究生,研究方向为轮机工程
参考文献:
[1] ROH S, SON G, SONG G, et al. Numerical study of transient natural convection in a pressurized LNG storage tank[J]. Applied Thermal Engineering, 2013, 52(1): 209-220
[2] LEE H B, PARK B J, RHEE S H, et al. Liquefied natural gas flow in the insulation wall of a cargo containment system and its evaporation[J]. Applied Thermal Engineering, 2011, 31(14-15): 2605-2615
[3] LIU Zhan, FENG, Yuyang, LEI, Gang, et al. (2018). Sloshing hydrodynamic performance in cryogenic liquid oxygen tanks under different amplitudes. Applied Thermal Engineering. 150. 10.1016/j.applthermaleng.2018.12.145.
[4] LEE D H, KIM M H, KWON S H, et al. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations[J]. Ocean Engineering, 2007, 34(1): 3-9
[5] 陶文铨. 数值传热学-第2版[M]. 西安: 西安交通大学出版社, 2001.
[6] 何晓聪, 何荣. 船用LNG储罐的液体晃荡数值分析[J]. 船海工程, 2016, 45(3)
[7] GROTLE E, VILMAR Æsøy. Numerical Simulations of Sloshing and the Thermodynamic Response Due to Mixing[J]. Energies, 2017, 10(9)
[8] 李娟. 基于三维参数的船舶稳性设计与优化研究[J]. 舰船科学技术, 2019, 41(02): 14-16