针对水下有缆遥控机器人(Remote Operated Vehicle,ROV)作业环境复杂多变,基于传统模糊增强算法声呐图像处理中,低灰度值像素点丢失等一系列问题,本文提出一种基于ln函数的声呐图像模糊图像增强算法。以声呐扫描图像为研究对象,针对传统的中值滤波算法在对声呐图像去噪时所需时间过长的问题,研究了一种改进的中值滤波算法,使得声呐图像去噪处理速度更快。针对传统的模糊增强声呐图像处理算法中低灰度值像素点丢失的问题,提出一种基于ln函数的模糊图像增强算法。经实验验证,基于ln函数的模糊图像增强算法解决了低\度值像素点丢失的问题。
Aiming at the complex and changeable working environment of the underwater cable remote control robot (ROV), this paper presents a sonar image enhancement algorithm based on LN function, which is based on a series of problems such as loss of low gray value pixels in sonar image processing by traditional fuzzy enhancement algorithm. Aiming at the problem that the traditional median filtering algorithm takes too long to denoise sonar image, an improved median filtering algorithm is studied, which makes the processing speed of sonar image denoising faster. Aiming at the loss of low-gray-value pixels in traditional image processing algorithms of fuzzy enhanced sonar, a new image enhancement algorithm based on LN function is proposed. The experimental results show that the fuzzy image enhancement algorithm based on LN function solves the problem of losing low gray value pixels.
2020,42(8): 167-171 收稿日期:2019-09-29
DOI:10.3404/j.issn.1672-7649.2020.08.031
分类号:TP391
基金项目:国防基础科研计划项目(JCKY2017414C002);国家自然科学基金资助项目(11574120);江苏省产业前瞻与共性关键技术(BE2017121,BE2018103)
作者简介:史志晨(1990-),男,硕士研究生,研究方向为现代测控与智能系统
参考文献:
[1] 凌宏杰, 曾庆军, 姚震球. 有缆遥控水下机器人的研究与发展趋势[J]. 中外船舶科技, 2018, 112(01): 5-12
[2] 佚名. 目标物体的识别介质及识别方法:, CN 1791816 A[P]. 2006.
[3] 成像声纳目标检测与跟踪技术研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
[4] 马珊. 水下机器人前视声呐多目标跟踪技术研究[D]. 哈尔滨:哈尔滨工程大学, 2016.
[5] 辛光红, 杨波. 基于声呐图像处理的船用水下目标识别技术研究[J]. 舰船科学技术, 2018(2x): 115-117
[6] Wen Long Jiang, Guang Lin Li, Wei Bing Luo. Application of improved median filtering algorithm to image de-noising[J]. Advanced Materials Research, 2014, 998: 838-841
[7] LI W, NI R, LI X, et al. Robust median filtering detection based on the difference of frequency residuals[J]. Multimedia Tools and Applications, 2018, 78(4): 8363-8381
[8] 黄允浒, 吐尔洪江·阿布都克力木, 唐泉, 等. 一种基于à trous算法的遥感图像模糊集增强算法[J]. 计算机应用与软件, 2018, 35(3): 187-192
[9] 基于模糊理论的医学图像增强算法研究[D]. 太原: 中北大学, 2017.
[10] 张家敏, 曾庆军, 朱志宇, 等. 自主式水下机器人控制系统及声呐目标识别[J]. 中国舰船研究, 2018, 13(06): 96-102
[11] 王武兵, 张春燕. 基于计算机网络的船舶视频图像模糊细节增强算法[J]. 舰船科学技术, 2018, 40(18): 167-169