船舶动力定位系统由测量系统、控制系统、电力推进系统和舵桨装置组成,其中控制系统是动力定位系统最重要的环节。本文介绍船舶动力定位系统常用的控制模型,详细分析用于动力定位控制系统的控制策略包括PID控制、模糊\神经网络自适应控制、预测控制、容错控制的研究与应用现状,并概括了各种控制策略存在的优缺点。最后从控制策略和海上作业需求变化两方面出发,提出了船舶DP控制系统的未来发展目标,以及下一步重点研究方向。
The ship dynamic positioning (DP) system consists of measuring system, control system, electric propulsion system and rudder propeller device. The control system is the most important part in DP system. In this paper, the common control model of ship DP system is introduced firstly, and then the research and application status of the control strategies which are used for DP control system are analyzed in detail. These control strategies contain PID control, fuzzy or neural network adaptive control, predictive control and fault-tolerant control. Simultaneously, the advantages and disadvantages of various control strategies are summarized. Lastly, future development goal and next emphasis research direction of ship DP control system is discussed from the two aspects of control strategies and operational requirements in the sea.
2020,42(9): 1-5 收稿日期:2019-07-03
DOI:10.3404/j.issn.1672-7649.2020.09.001
分类号:U662.26
作者简介:廖成毅(1986-),男,博士,工程师,专业方向为舰船动力定位系统研究及设计、非线性控制算法研究及应用
参考文献:
[1] SORENSEN A. J A survey of dynamic positioning control systems[J]. Annual Reviews in Control, 2011, 35(1): 123–136
[2] 赵志高, 杨建民, 王磊, 等. 动力定位系统发展状况及研究方法[J]. 海洋工程, 2002, 2(1): 91–97
[3] 吴德烽, 杨国豪. 船舶动力定位关键技术研究综述[J]. 舰船科学技术, 2014, 36(7): 1–6
[4] FOSSENT. I.. Marine control systems guidance, navigation and control of ships, rigs and underwater vehicles[M]. Trondheim, Norway, Marine Cyernetics AS, 2002.
[5] DU Jialu, YANG Yang. A robust adaptive neural networks controller for maritime dynamic positioning system[J]. Neurocomputing, 110 (2013): 128–136.
[6] HU Xin, DU Jialu, SHI Jiwei. Adaptive fuzzy controller design for dynamic positioning system of vessels[J]. Applied Ocean Research, 53 (2015): 46–53.
[7] SVENN A. T., ROGER S.. Hybrid control to improve transient response of integral action in dynamic positioning of marine vessels[C]. IFAC-PapersOnLine 48–16 (2015) 166–171.
[8] PHILIPP K., CHARLOTTE S., ADEL H., et al. Dynamic positioning with active roll reduction using voith schneider propeller[C]. IFAC-PapersOnLine 48-16 (2015) 178–183.
[9] OLE M. R. R., ASTRID H. B., MORTEN B.. Comparing controllers for dynamic positioning of ships in extreme seas[C]. IFAC-PapersOnLine 49-23 (2016) 258–264.
[10] AWANTHA J., SALIM A., SYED I.. Wavelet-based controller design for dynamic positioning of vessels[C]. IFAC paper, 2017.
[11] 孙蓓蓓. 动态不确定海况下的船舶动力定位控制算法. 舰船科学技术[J], 2016, 38(2A).
[12] WANG. L. X. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy System, 1993, 1(2): 146–155
[13] ZHANG, T., GE, S. S. HANG, C. C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica, 2000, 36(12): 1835–1846
[14] DU Jialu, HU Xin. Robust dynamic positioning of ships with disturbances under input Saturation[J]. Automatica, 2016, 73: 207–214
[15] HU Xin, DU Jialu. Robust adaptive NN control of dynamically positioned vessels under input constraints[J]. Neurocomputing, 2018, 14: 1–12
[16] LIN Xiaogong, NIE Jun, JIAO Yuzhao, et al. Nonlinear adaptive fuzzy output- feedback controller design for dynamic positioning system of ships[J]. Ocean Engineering, 2018, 158: 186–195
[17] DU Jialu, HU Xin. Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015: 1–12
[18] 王元慧, 施小成, 边信黔. 基于模型预测控制的船舶动力定位约束控制[J]. 船海工程, 2007, 29(3): 22–25
[19] ÅSMUND V. F.. Dynamic positioning by nonlinear model predictive control[D]. Norwegian University of Science and Technology, 2008.
[20] 熊卫卫. 基于模糊预测控制的船舶动力定位系统控制器研究[D]. 镇江: 江苏科技大学, 2012.
[21] 王刚. 船舶动力定位系统模型预测控制研究[D]. 大连: 大连海事大学, 2016.
[22] MARGARITA V. S., EVGENY I. V.. Dynamic positioning based on nonlinear MPC[C]. 9th IFAC Conference on Control Applications in Marine Systems, Osaka, Japan, September 2013: 17–20.
[23] 梁海志, 李芦钰, 欧进萍. 基于模型预测控制的动力定位过驱动控制设计[J]. 哈尔滨工程大学学报, 2014, 35(6): 701–706
[24] 刘菊, 熊晓东, 汪大鹏, 等. 基于EKF的船舶模型预测动力定位导引控制器设计[J]. 造船技术, 2016, 2: 18–23
[25] ALEKSANDER V., TOR A. J. Dynamic positioning with model predictive control[J]. IEEE Transactions on Control Systems Technology, 2016: 1–14
[26] 胡明佳. 执行器故障的船舶动力定位系统容错控制[D]. 大连: 大连海事大学, 2016.
[27] 宁继鹏. 船舶动力定位容错控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[28] 张赞. 船舶动力定位测量系统智能故障诊断方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[29] 李鸣阳. 动力定位船推进器故障容错控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[30] 郝立颖, 韩金城, 郭戈, 等. 带有推进器故障的船舶动力定位系统的鲁棒滑模容错控制[J]. 控制与决策, 2019: 1–7
[31] FLAVIA B., GIANLUCA I., SAURO L., et al. Advanced control for fault-tolerant dynamic positioning of an offshore supply vessel[J]. Ocean Engineering, 2015: 472–484
[32] 谢文博, 付明玉, 施小成. 动力定位船舶自适应滑模无源观测器设计[J]. 控制理论与应用, 2013, 1(30): 131–136
[33] 付明玉, 刘佳, 吴宝奇. 基于扰动观测器的动力定位船终端滑模航迹跟踪控制[J]. 中国造船, 2015, 4(56): 33–45
[34] 和红磊, 王玉龙. 基于滑模自抗扰的半潜式海洋平台动力定位控制方法研究[J]. 船舶工程, 2016, 11(38): 72–77
[35] 关克平, 张新放. 滑模控制船舶动力定位控制系统研究[J]. 舰船科学技术, 2018, 3(40): 61–65
[36] 苏义鑫, 赵俊. 带有 UKF 滚动时域估计的动力定位控制器[J]. 哈尔滨工程大学学报, 2016, 10(37): 1381–1386
[37] AWANTHA J., SALIM A., SYED I.. Wavelet-based controller design for dynamic positioning of vessels[C]. IFAC PapersOnLine 2017, 50 (1): 1133–1138.
[38] 徐树生, 李娟, 温利, 等. 强跟踪自适应CKF 及其在动力定位中应用[J]. 电机与控制学报, 2015, 2(19): 101–108
[39] 林孝工, 焦玉召, 梁坤, 等. 相关噪声下非线性滤波及在动力定位中的应用[J]. 控制理论与应用, 2016, 8(33): 1081–1088
[40] 焦建芳. 多动力定位船的协调编队控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[41] 王彬. 多艘动力定位船鲁棒自适应编队控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[42] 骆伟. 多DP船协调编队有限时间控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.