近年来,船舶的绿色化与智能化引起了业界的广泛关注,混合动力船舶应用多种清洁能源,可有效地提高船舶的绿色化水平。通过多种船舶清洁能源应用技术,以及混合动力系统优化设计技术、建模与仿真技术、能量管理策略等方面的系统分析,论述了诸关键技术的国内外发展现状,提出了船舶多清洁能源混合动力系统所存在的不足与挑战,最终,对多清洁能源混合动力系统及其关键技术的未来发展与研究方向做出展望。
In recent years, green and intelligent ship has attracted extensive attention in the shipping industry. The application of a variety of clean energies in hybrid ships can effectively improve the green level of ships. Through the systematic analysis of various application technologies of multi-clean energy, optimization design technology of hybrid system, modeling and simulation technology, energy management strategy, the development status of these key technologies at home and abroad is analyzed, and the shortcomings and challenges of multi-clean energy hybrid system are proposed. Finally, the future development and research direction of multi-clean energy hybrid system and key technologies are prospected.
2020,42(9): 6-11 收稿日期:2019-09-24
DOI:10.3404/j.issn.1672-7649.2020.09.002
分类号:U664.121.1
基金项目:国家自然科学基金青年科学基金资助项目(51909020);长江航道局科技项目(201930004);辽宁省自然科学基金资助项目(2019-BS-023);中央高校基本科研业务费专项资金资助(3132019194);2019年基本科研业务费重点科学研究培育项目(3132019316)
作者简介:王凯(1990-),男,博士,讲师,主要从事船舶智能能效管理与绿色技术的研究。
参考文献:
[1] EYRING V, KÖHLER H W, LAUER A, et al. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D17)
[2] SALMI W, VANTTOLA J, ELG M, et al. Using waste heat of ship as energy source for an absorption refrigeration system[J]. Applied Thermal Engineering, 2017, 115(Complete): 501–516
[3] 中国船级社. 绿色船舶规范[S]. 2015.
[4] 李奇. 质子交换膜燃料电池系统建模及其控制方法研究[D]. 成都: 西南交通大学, 2011
[5] CHAVAN S L, TALANGE D B. Modeling and performance evaluation of PEM fuel cell by controlling its input parameters[J]. Energy, 2017, 138(1): 437–445
[6] HOU Y, YANG Z, WAN G. An improved dynamic voltage model of PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11154–11160
[7] CHAVAN S L, TALANGE D B. System identification black box approach for modelling performance of PEM fuel cell[J]. Journal of Energy Storage, 2018, 18: 327–332
[8] COLLONG S, KOUTA R. Fault tree analysis of proton exchange membrane fuel cell system safety[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8248–8260
[9] WU C, CHEN J, XU C, et al. Real-time adaptive control of a fuel cell/battery hybrid power system with guaranteed stability[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1394–1405
[10] YANG N, FU Y, YUE H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries[J]. Electrochimica Acta, 2019, 311: 8–20
[11] 凡序国. 锂离子电池组等效电路建模及SOC估算的研究[D]. 绵阳: 西南科技大学, 2017.
[12] PENG H, WANG J, SHEN W, et al. Compound control for energy management of the hybrid ultracapacitor-battery electric drive systems[J]. Energy, 2019, 175: 309–319
[13] TURPIN C, LAETHEM D V, MORIN B, et al. Modelling and analysis of an original direct hybridization of fuel cells and ultracapacitors[J]. Mathematics & Computers in Simulation, 2017, 131: 76–87
[14] CHIANG Y, SEAN W, JEONG S. Current control of energy management system by applying ultracapacitor with boost converter interface for reused lithium-ion battery[J]. Journal of Cleaner Production, 2019, 220: 945–952
[15] 岳蕾, 张志国, 彭娅玲. 燃料电池作为船舶动力装置的可行性分析和研究[J]. 舰船科学技术, 2009, 31(2): 63–66
[16] BREEZE P. Power system energy storage technologies [M]. Academic Press,2018: 61-68.
[17] 唐道贵. 基于智能控制算法的混合动力船舶能量管理策略研究[D]. 武汉: 武汉理工大学, 2017.
[18] JEONG B, ZHOU P L, OGUZ E, et al. Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives[J]. Applied energy, 2018, 230(15): 1065–1081
[19] 刘永志, 胡义, 徐振峰. 柴电混合动力船舶机动性能研究[J]. 内燃机工程, 2019, 40(1): 50–56
[20] 袁裕鹏, 王凯, 严新平. 混合动力船舶能量管理控制策略设计与仿真[J]. 船海工程, 2015, 44(2): 95–98
[21] GHENAI J, BETTAYEB M, BRDJANIN B, HAMID A K. Hybrid solar PV/PEM fuel cell/diesel generator power system for cruise ship: A case study in Stockholm, Sweden[J]. Case Studies in Thermal Engineering, 2019: 100497
[22] 李鸿瑞, 熊良胜, 邵诗逸. 直流电力推进系统在小水线面双体科考船上的应用[J]. 舰船科学技术, 2017, 39(8): 85–90
[23] BIJAN Z, LARS E N, KRISTINE B L. Optimized efficiency of all-electric ships by dc hybrid power systems[J]. Journal of Power Sources, 2014, 255(1): 341–354
[24] HASELTALAB A, BOTTO M A, NEGENBORN R. On-board voltage regulation for all-electric DC ships[J]. IFAC Papers OnLine, 2018, 51(29): 341–347
[25] BUI T M N, DINH T Q, MARCO J, et al. An energy management strategy for DC hybrid electric propulsion system of marine vessels[C]//2018, 5th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2018.
[26] ACCETTA A, PUCCI M. Energy management system in DC micro-grids of smart ships: main gen-set fuel consumption minimization and fault compensation[J]. IEEE Transactions on Industry Applications, 2019: 3097–3112
[27] MOTAPON S N, DESSAINT L, AL-HADDAD K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1320–1334
[28] LI S, LI J, HE H, et al. Lithium-ion battery modeling based on Big Data[J]. Energy Procedia, 2019, 159: 168–173
[29] HE H, XIONG R, ZHANG X, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman filter based on an improved thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1461–1469
[30] 贺建军, 孙超. 质子交换膜燃料电池的建模与仿真分析[J]. 中南大学学报, 2010, 41(2): 566–571
[31] CHAVAN S L, TALANGE D B. Modeling and performance evaluation of PEM fuel cell by controlling its input parameters[J]. Energy, 2017, 138(1): 437–445
[32] HOU Y, YANG Z, WAN G. An improved dynamic voltage model of PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11154–11160
[33] CHAVAN S L, TALANGE D B. System identification black box approach for modelling performance of PEM fuel cell[J]. Journal of Energy Storage, 2018, 18: 327–332
[34] PARVINI Y, SIEGEL J, STEFANOPOULOU A, et al. Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1574–1585
[35] 孙家南, 赵洋, 韦莉, 等. 基于系统辨识的电化学超级电容器建模[J]. 高压电器, 2012, 48(9): 16–21
[36] WANG Y, LIU C, PAN R, et al. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator[J]. Energy, 2017, 121: 739–750
[37] WANG C, RUI X, HE H, et al. Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles[J]. Applied Energy, 2016, 183: 612–622
[38] PAHLEVANINEZHAD M, DAS P, DROBNIK J, et al. A ZVS Interleaved Boost AC/DC Converter Used in Plug-in Electric Vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3513–3529
[39] 王建华, 顾彬仕, 段青, 等. 单相DC/AC逆变器大信号快速建模仿真方法[J]. 电力系统自动化, 2017, 41(3): 110–116
[40] 宋波. 船舶能量管理系统设计研究[J]. 中国舰船研究, 2011, 6(2): 93–97
[41] WANG T, QI L, CHEN W, et al. Application of energy management strategy based on state machine in fuel cell hybrid power system[C]//Asia-pacific IEEE Transportation Electrification Conference & Expo. 2017.
[42] LI Q, YANG H, HAN Y, et al. A state machine strategy based on droop control for an energy management system of PEMFC-battery-supercapacitor hybrid tramway[J]. International Journal of Hydrogen Energy, 2016: 16I48–16I59
[43] ZHU L, HAN J, PENG D, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]// International Conference on Green Energy. 2014.
[44] 陈龙, 李文瑶, 徐兴, 等. 基于在线ECMS的混合动力公交车能量管理策略优化与HIL仿真[J]. 汽车工程, 2016, 38(10): 1163–1168
[45] COUCH J, FIORENTINI L, CANOVA M. An ECMS-based approach for the energy management of a vehicle electrical system[J]. Ifac Proceedings Volumes, 2013, 46(21): 115–120
[46] VU T V, GONSOULIN D, DIAZ F, et al. Predictive control for energy management in ship power systems under high-power ramp rate loads[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 788–797
[47] HOU J, SUN J, HOFMANN H. Adaptive model predictive control with propulsion load estimation and prediction for all-electric ship energy management[J]. Energy, 2018, 150: 877–889
[48] BASSAM A M, PHILLIPS A B, TURNOCK S R, et al. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship[J]. International Journal of Hydrogen Energy, 2016
[49] GEERTSMA R D, NEGENBORN R R, VISSER K, et al. Design and control of hybrid power and propulsion systems for smart ships: A review of developments[J]. Applied Energy, 2017: 194
[50] ANONYMOUS. AAM to Build Li-Ion hybrid for red and white fleet[J]. Marine Log, 2017, 122(3)
[51] YUAN Y, WANG J, YAN X, et al. A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship[J]. Energy, 2018, 165: 965–978
[52] ANONYMOUS. SANLORENZO presents SL106 Hybrid[EB/OL]. 2019-8-2/2019-8-23: http://theislander.net.