为提高30万吨级大型船舶非线性Norrbin模型的精度,本文在不改变Norrbin辨识的非线性力(矩)公式的基础上,将与转首角速度r和转首角加速度$ \dot r$有关的4个流体动力导数均放大1.4倍。运用融入旋回速降与舵机伺服系统的VB与Matlab混合编程的船舶运动数学模型实验平台反复测试,改进的Norrbin模型旋回试验与实船相比精度为93.6%,比改进前提升了17.6%,比MMG模型提升了1.3%;Z形试验精度为84.8%,与MMG模型精度相当,但图形相位符合度更好。将改进的Norrbin模型应用到30万吨级不同船型的船舶旋回预报上,验证其泛化性能,仿真表明具有85.1%的精度,优于原Norrbin模型73.4%的精度。改进的Norrbin模型保留了原Norrbin模型所需船舶参数少、物理意义明显的优点,且精度得到提高、泛化性能较好。
In order to improve the accuracy of the nonlinear Norrbin model for 300 000 tons large-scale ship, the four hydrodynamic derivatives relating to yaw rate r and yaw acceleration $ \dot r$ are magnified 1.4 times without changing the nonlinear force (moment) formulas identified by Norrbin. Through the repeated tests on the ship motion mathematical model platform programmed by the mix of VB and Matlab, the accuracy of the improved Norrbin model is 93.6% compared with the full-scale ship turning test, 17.6% higher than the original one, and 1.3% higher than that of the MMG model, considering the rudder servo system and speed loss in turning test. The accuracy of the improved Norrbin model in zig-zag test is 84.8%, which is similar to that of the MMG model, but its phase matching degree of the graphics is better than the MMG model. For the verification of generalization performance, the improved Norrbin model is applied to forecast the manoeuvrability of different type of ship in the 300 000 tons level. It owns an accuracy of 85.1%, superior to the original Norrbin model with the accuracy of 73.4%. The improved Norrbin model preserves the advantages of original Norrbin model, i.e. the less modified ship parameters and obvious physical meaning, meanwhile the improved Norrbin model possesses the better accuracy and generalization performance.
2020,42(10): 35-41 收稿日期:2019-09-09
DOI:10.3404/j.issn.1672-7649.2020.10.008
分类号:U661.73
基金项目:国家自然科学基金资助项目(51679024),学院科研基金资助项目(2018B41)
作者简介:杨光平(1993-),男,硕士,助教,主要从事船舶操纵及船舶运动控制研究
参考文献:
[1] 吴伟萍. 船舶迎浪航向下的垂荡运动建模与仿真分析[J]. 舰船科学技术, 2018, 40(22): 4-6
WU Weiping. Research on modeling and simulation of heave motion of ships in waves[J]. Ship Science and Technology, 2018, 40(22): 4-6
[2] 张华军, 谢呈茜, 苏义鑫, 等. 船舶操纵运动仿真中改进变步长龙格库塔算法[J]. 华中科技大学学报(自然科学版), 2017, 45(7): 122-126
[3] 郭晨, 汪洋, 孙富春, 等. 欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2009, 24(3): 321-327
[4] 赵希人, 唐慧妍, 彭秀艳, 等. 船舶横向运动多变量随机控制研究[J]. 船舶力学, 2004, 8(5): 35-41
[5] NORRBIN N H. Further studies of parameter identification of linear and nonlinear ship steering dynamics[R]. SSPA, Gothenburg, Sweden, Report 1920-6, 1977.
[6] 张显库, 杨光平. 大型船舶的非线性Norrbin数学模型改进[J]. 中国航海, 2016, 39(3): 50-53
[7] UENO M, TSUKADA Y, KITAGAWA Y. Rudder effectiveness correction for scale model ship testing[J]. Ocean Engineering, 2014, 92: 267-284
[8] YASUKAWA H, YOSHIMURA Y. Introduction of MMG standard method for ship maneuvering predictions[J]. Journal of Marine Science and Technology, 2015, 20(1): 37-52
[9] ABKOWITZ M. A. Lectures on ship hydrodynamics steering and manoeuvrability. Hydro and Aerodynamics Laboratory. Report No. Hy-5. Denmark, 1964.
[10] 张显库, 金一丞. 控制系统建模与数字仿真(第2版)[M]. 大连: 大连海事大学出版社. 2013.
[11] CLARKE D, GEDLING P, HINE G. Application of manoeuvring criteria in hull design using linear theory[J]. Naval Architect, 1983, 11(3): 45-68
[12] CRANE JR C. L Manoeuvring trials of the 278000DWT ESSO OSAKA in shallow and deep water[J]. Ocean Currents, 1979, 1: 180
[13] SIMMAN 2008: part B benchmark test cases, KVLCC2 description[C]// Proceedings of workshop on verification and validation of ship manoeuvring simulation method, Copenhagen, 2008, 1: B7-B10.
[14] 张显库, 杨光平, 张强. 一种双极性S函数修饰的非线性船舶航向保持算法[J]. 大连海事大学学报, 2016, 42(3): 15-19
[15] IMO. Standards for ship manoeuvrability[S]. RESOLUTION MSC, 2002.