本文针对现有的一类小型观测级ROV(Remotely Operated Vehicle)的四自由度运动,提出一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)自适应滑模控制方法。考虑了ROV运动时模型不确定因素的干扰,并给出ROV的模型不确定项。通过引入RBF神经网络算法,对ROV模型不确定项进行了补偿。此外,采用反正切函数替换了经典滑模控制中常用的符号函数,减小了滑模控制的抖动。通过Lyapunov稳定性定理,验证了该系统是全局渐进稳定的。使用Matlab/Simulink仿真软件,证明了RBF神经网络自适应滑模控制方法的可行性。
This work focus on a RBFNN(Radial Basis Function Neural Network) based adaptive sliding mode control(RBFSMC) for a kind of small monitoring ROV in 4 degrees of freedom motion. In this paper, the ROV model uncertainties were considered, and the mathematical model of the ROV model uncertainties were given. By using RBF neural network, the ROV model uncertainties were compensated. In addition, for reducing the chattering of conventional sliding mode control(CSMC), the sign function in CSMC was replaced by arctan function. According to Lyapunov stability theorem, the global asymptotic stability of the system was proven. The Matalb/Simulink experiment results validate the effectiveness of RBFSMC.
2020,42(10): 83-89 收稿日期:2020-03-05
DOI:10.3404/j.issn.1672-7649.2020.10.017
分类号:O231.2
基金项目:国家自然科学基金青年项目(61601194);江苏科技大学海洋装备研究院高技术协同创新项目(HZ20190005);2019年江苏省研究生科研创新项目(KYCX19_2314)
作者简介:杨淼(1978-),女,教授, 研究方向为水下视觉、图像处理、机器视觉
参考文献:
[1] HOSSEINI M, SEYEDTABAII S. Improvement in ROV horizontal plane cruising using adaptive method[C]// 2016 24th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2016.
[2] MOON, G, JOO, et al. An autonomous underwater vehicle as an underwater glider and its depth control[J]. International Journal of Control, Automation& Systems, 2015, 13(5): 1-9
[3] OSEN O L, SANDVIK R I, ROGNE V, et al. A novel low cost ROV for aquaculture application[C]//OCEANS 2017-Anchorage. IEEE, 2017: 1-7.
[4] KHADHRAOUI A, BEJI L, OTMANE S, et al. Stabilizing control and human scale simulation of a submarine ROV navigation[J]. Ocean Engineering, 2016, 114: 66-78
[5] TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engineering, 2018, 147: 333-339
[6] SARHADI P, NOEI A R, KHOSRAVI A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle[J]. Robotics and Autonomous Systems, 2016, 83: 87-93
[7] SHOJAEI K, AREFI M M. On the neuro-adaptive feedback linearising control of underactuated autonomous underwater vehicles in three-dimensional space[J]. IET Control Theory & Applications, 2015, 9(8): 1264-1273
[8] XIANG X, LAPIERRE L, JOUVENCEL B. Smooth transition of AUV motion control: From fully-actuated to under-actuated configuration[J]. Robotics and Autonomous Systems, 2015, 67: 14-22
[9] CHIN C S, LIN W P. Robust genetic algorithm and fuzzy inference mechanism embedded in a sliding-mode controller for an uncertain underwater robot[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 655-666
[10] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 129: 613-625
[11] LIU S, LIU Y, WANG N. Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances[J]. Nonlinear Dynamics, 2017, 88(1): 465-476
[12] LONDHE P S, PATRE B M. Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle[J]. Intelligent Service Robotics, 2019, 12(1): 87-102
[13] CHEN J W, ZHU H, ZHANG L, et al. Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization[J]. Ocean Engineering, 2018, 156: 217-223
[14] YAN Z, WANG M, XU J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics[J]. Ocean Engineering, 2019, 173: 802-809
[15] WANG L, ISIDORI A, SU H, et al. Nonlinear output regulation for invertible nonlinear MIMO systems[J]. International Journal of Robust and Nonlinear Control, 2016, 26(11): 2401-2417
[16] LIU J K. Sliding mode control design and matlab simulation[M]. Tsinghua University Press, 2005.
[17] SLOTINE J J E, LI W. Applied nonlinear control[M]. Prentice hall, 1991.
[18] SOYLU S, BUCKHAM B J, PODHORODESKI R P. A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659
[19] LIU C, XU G H, WANG G X, et al. Global sliding mode depth control of abdominal operating ROV[J]. Techniques of Automation and Applications, 2018, 37(3): 11-17
[20] HUANG B, YANG Q. Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs[J]. Ocean Engineering, 2019, 178: 80-94
[21] FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: Wiley, 1994.