由于陆用电力系统及传统船用电力系统的研究对象、运行要求和调控手段与综合电力系统不同,故二者的燃油经济性优化调度策略无法直接应用于综合电力系统。针对中压直流输电综合电力系统燃油经济性运行要求和能量调控手段的特点,本文提出基于改进下垂控制的综合电力系统燃油经济性优化调度方法。根据综合电力系统运行在最优点,发电机按剩余功率比例输出,发电机励磁控制环切换时扰动尽可能小的运行需求,通过系统燃油经济性模型计算系统最优点,给出希望的直流母线电压值,整定发电机励磁的改进下垂控制环的控制参数,实现综合电力系统燃油经济性的优化调度,并通过仿真试验验证了所提出方法的有效性。
Since the research objects, operational requirements and control methods of land power systems and traditional marine power systems are different from those of the integrated power system, the fuel economy scheduling strategies of the two cannot be directly applied to the integrated power system. Aiming at the characteristics of fuel economy operation requirements and energy control methods for medium voltage DC transmission integrated power system, this paper proposes an optimized power system fuel economy optimization scheduling method based on improved droop control. According to the operation of the integrated power system, the generator is output according to the residual power ratio. When the generator excitation control loop is switched, the disturbance is as small as possible. Through the system fuel economy model calculation system, the best advantage is given, and the desired DC bus voltage is given. The control parameters of the improved droop control loop of the generator excitation are realized, and the optimal scheduling of the fuel economy of the integrated power system is realized. The effectiveness of the proposed method is verified by simulation experiments.
2020,42(10): 123-128 收稿日期:2019-05-05
DOI:10.3404/j.issn.1672-7649.2020.10.024
分类号:TM74
基金项目:国家自然科学基金资助项目(51877211);973计划资助项目(613294)
作者简介:徐晨(1995-),女,硕士研究生,主要研究领域为电力系统分析与控制
参考文献:
[1] MA Weiming. A survey of the second-generation vessel integrated power system[C]//The International Conference on Advanced Power System Automation and Protection. Beijing, China: IEEE, 2011: 1293-1302.
[2] MA Weiming. Development of vessel integrated power system[C]// The 14th International Conference on Electrical Machines and Systems. Beijing, China: IEEE, 2011.
[3] 肖润龙, 王刚, 李子梦, 等. 中压直流输电直流区域配电综合电力系统静态状态估计方法研究[J]. 电工技术学报, 2018, 33(13): 3023-3033
[4] 龚喜文, 郑元璋, 石林龙. 船舶PMS控制器设计及关键技术研究[J]. 上海船舶运输科学研究所学报, 2010, 33(2): 83-87
[5] 石林龙, 龚喜文, 郭晨, 等. 综合电力舰船能量动态优先管理技术[J]. 中国航海, 2013, 36(3): 19-22
[6] ZAHEDI. B, NORUM. L. E, LUDVIGSEN. K. B Ludvigsen. Optimized efficiency of all-electric ships by DC hybrid power systems[J]. J. Power Sources, 2014, 255: 341-354
[7] BENATMANE M, MALTBY R. Integrated electric power and propulsion system on land an overview[C]//IEEE Electric Ship Technology Symposium, Arlington, USA, 2007: 7-13.
[8] DAMIR R. Integrated control of marine electrical power systems[D]. Department of Marine Technology, Norwegian University of Science and Technology, 2008.
[9] VIANA A, PEDROSO J P. A new MILP-based approach for unit commitment in power production planning[J]. Electrical Power and Energy Systems, 2013, 44(1): 997-1005
[10] 冉晓洪, 苗世洪, 吴英杰, 等. 基于最优功率分配的多端直流网络改进下垂控制策略[J]. 电工技术学报, 2016, 31(9): 16-24
[11] 徐玉琴, 马焕均. 基于改进下垂控制的逆变器并联运行技术[J]. 电力系统保护与控制, 2015, 43(7): 103-107
[12] TAO Y, LIU Q, DENG Y, et al. Analysis and mitigation of inverter output impedance impacts for distributed energy resource interface[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3563-3576
[13] ZHONG Q. Robust droop controller for accurate proportional load sharing among inverters operated in parallel[J]. IEEE Transactions on Industrial Elec-tronics, 2013, 60(4): 1281-1290
[14] 李浩然, 杨旭红, 冯成臣. 多逆变器并联下的输出阻抗分析和改进下垂控制策略研究[J]. 电力系统保护与控制, 2015, 43(20): 29-35
[15] 薛潺. 基于改进下垂控制的多微网并联运行控制策略研究[D]. 北京: 北京工业大学, 2018.