为有效规避外军侦察卫星对我海上舰船目标的侦察监视或对其实施干扰抗击,需要对外军卫星轨道进行预测。卫星轨道预报模型局限性及预测精度不高是目前该领域存在的难题,针对传统方法存在的问题,提出一种基于神经网络算法的卫星轨道预报算法,通过训练历史TLE数据得出轨道变化规律,从而预报卫星轨道,初步的实验结果表明,所提出的算法可行。
It is necessary to predict the orbit of foreign military satellites in order to effectively evade the reconnaissance and surveillance of Chinese naval ship targets by foreign military reconnaissance satellitesor to carry out interference countermeasures. The limitation and low prediction accuracy of the satellite orbitprediction model is the problems currently existing in this field. Aiming at the existing problem of the traditional method, this paper proposes a satellite orbit prediction algorithm based on neural network algorithm, and obtain the track change rules by training historical TLE data, which forecast satellite orbit. the preliminary experimental results show that the proposed algorithm is feasible.
2020,42(10): 146-151 收稿日期:2020-07-03
DOI:10.3404/j.issn.1672-7649.2020.10.028
分类号:TP183
作者简介:罗飞(1977-),男,博士,副研究员,研究方向为海军科技创新、军事运筹学
参考文献:
[1] 庄启智, 窦鑫. 基于SGP4模型的卫星轨道预报与精度分析[J]. 无线互联科技, 2016(5): 8-9
ZHUANG Qizhi, DOU Xin. Analysis on satellite orbit prediction and accuracy based on SGP4 model[J]. Wireless Internet Technology, 2016(5): 8-9
[2] BOLANDI H., ASHTARI LARKI M. H, SEDIGHY S. H., et al. Estimation of simplified general perturbations model 4 orbital elements from global positioning system data by invasive weed optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015(8): 1384-1394
[3] RUMELHART, DAVID E, HINTON, et al. Learning representations by back-propagating errors[J]. Nature, 1986(323): 533-536
[4] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[M]//Supervised Sequence Labelling with Recurrent Neural Networks. Springer Berlin Heidelberg, 1997: 1735-1780.
[5] REN Haoli, CHEN Xiaolin, GUAN Bei. Research on satellite orbit prediction based on neural network algorithm[C]. 2019 3rd High Performance Computing and Cluster Technologies Conference Procedings, 2019: 267-275.
[6] GERS F A, SCHMIDHUBER J. Recurrent nets that time and count[C]//Ieee-Inns-Enns International Joint Conference on Neural Networks. IEEE, 2000: 189-194.
[7] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Computer Science, 2014: 1724-1734.
[8] 闫瑞东, 王荣兰, 刘四清, 等. 空间目标碰撞告警的协方差计算与应用[J]. 空间科学学报, 2014, 34(4): 441-448
YAN Ruidong, WANG Ronglan, LIU Siqing, et al. Study of covariance calculation in space objects collision warning[J]. Chinese Journal Space Science, 2014, 34(4): 441-448