随着航海事业不断发展,现代化舰船对导航系统精度、可靠性和智能化程度等提出了更高要求。针对导航信息融合精度不够、航海安全保障愈发重要以及系统故障频率不断增大等问题,以舰船组合导航系统为基础,开展基于人工智能技术的导航系统研究。对人工智能在卡尔曼滤波融合、航海避碰决策以及智能故障诊断中的应用,进行深入探讨和总结。对于新型舰船组合导航系统朝着更高精度、更高可靠性和智能化方向发展,具有重要的理论指导意义。
With the continuous development of the navigation industry, modern ships have put forward higher requirements on the accuracy, reliability and intelligence of the navigation system. At present, there are problems such as insufficient navigation information fusion accuracy, increasingly important maritime safety assurance, and increasing frequency of system failure. Based on the ship integrated navigation system, the research of navigation system based on artificial intelligence technology was carried out. The application of artificial intelligence in Kalman filter fusion, marine collision avoidance decision-making and intelligent fault diagnosis is thoroughly discussed and summarized. It has important theoretical guiding significance for the development of new-type ship integrated navigation systems towards higher accuracy, reliability and intelligence.
2020,42(10): 152-156 收稿日期:2020-02-20
DOI:10.3404/j.issn.1672-7649.2020.10.029
分类号:U666.11
作者简介:付中泽(1967-),硕士,主要从事航海导航技术研究
参考文献:
[1] 蒋恩松, 李孟超, 孙刘杰. 一种基于神经网络的卡尔曼滤波改进方法[J]. 电子与信息学报, 2007, 29(9): 2073-2076
[2] 杨跃轮. 智能导航系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2002: 1-5.
[3] 王礼军. 模糊神经网络专家系统在发动机故障诊断中的应用研究[D]. 重庆: 重庆交通大学, 2012: 7-34.
[4] 王峰. 基于联邦卡尔曼滤波的车载组合导航算法研究[D]. 哈尔滨工程大学, 2018: 25-29.
[5] 鲍宏杨. 舰船自动智能避碰数学模型及其仿真研究[J]. 舰船科学技术, 2017, 39(10): 164-169
[6] 胡甚平. 船舶会遇过程中避碰阶段的划分与量化[J]. 中国航海, 2001, 2(49): 83-87
[7] 司景萍, 马继昌, 牛家骅, 等. 基于模糊神经网络的智能故障诊断专家系统[J]. 振动与冲击, 2017, 36(04): 164-171