近年来,以物联网、人工智能、云计算及大数据等为代表的新一代信息技术正在对传统船舶行业掀起一场颠覆性的产业变革。船舶行业相继提出了制造业与航运业向智能化、服务化转型升级的重要战略,实现智能制造与智能服务,增强各方的核心竞争力。面对“智能化、服务化”作为转型升级主攻方向,船舶行业需要解决的瓶颈之一是如何基于船舶单一数据源,建立船舶物理空间与信息空间的交互与共融,推进船舶全生命周期的智能化服务与一体化发展。针对这一挑战,提出船舶数字孪生的概念,阐述船舶数字孪生的系统组成、运行机制、关键技术等。在此基础上,探讨数字孪生在船舶全生命周期的应用展望。
Recently, the new generation information technologies featured with Internet of Things, artificial intelligence, cloud computing and big data bring a significant industrial revolution in conventional shipping industry. The major stakeholders in the shipping industry propose important strategies of transforming and upgrading sectors of manufacturing and transporting towards intelligence and service. Thus, intelligent manufacturing and intelligent service could be realized, which would enhance the core competitiveness of all parties. Facing with the main direction of transforming and upgrading towards intelligence and service, all stakeholders in the shipping industry need to address one common challenge, that is how to establish the interaction and integration of the ship's physical space and information space based on the single data source of the ship, so that the intelligent service and integrated development in the ship life cycle could be pushed forward. In view of this challenge, this paper proposed the concept of ship digital twin, and then introduced the system composition, operation mechanism and key technologies of ship digital twin. Furthermore, the application outlook of ship digital twin in the life cycle was discussed.
2020,42(11): 1-8 收稿日期:2019-11-04
DOI:10.3404/j.issn.1672-7649.2020.11.001
分类号:TP301.6;U692.5+1
基金项目:国家自然科学基金资助项目(51809100);中央高校基本科研业务费专项资金资助项目(2018KFYYXJJ015)
作者简介:杨少龙(1988-),男,博士,讲师,研究方向为智能船舶控制理论等
参考文献:
[1] 刘碧涛, 姜慧, 尚家发. “数字化双胞胎”技术助推船舶数字化变革[J]. 中国远洋海运, 2018(2): 68-70
LIU BT, JIANG H, SHANG FJ. Digital twin push digital transformation of shipping[J]. China Ocean Shipping, 2018(2): 68-70
[2] STOPFORD M. Smart shipping & the 4th sea transport revolution[R]. Clarkson Research, 2016.
[3] 吴强. 舰船数字化制造的若干关键技术[J]. 中国造船, 2005(2): 75-80
WU Q. Some key technologies of digital manufacturing for ship[J]. Shipbuilding of China, 2005(2): 75-80
[4] 郑华耀, 沈苏海. 计算机技术和船舶自动化机舱探索[J]. 中国造船, 2013, 54(2): 178-186
ZHEGN HY, SHEN SH. Investigation of marine engine room automation along with progress of computer technology[J]. Shipbuilding of China, 2013, 54(2): 178-186
[5] 段新, 褚健, 施一明. 船舶综合数字信息系统研究与探讨[J]. 中国造船, 2010, 51(1): 183-190
DUAN X, CHU J, SHI YM. Research and discussion on integrated digital information system for ship[J]. Shipbuilding of China, 2010, 51(1): 183-190
[6] HAN Y, LEE J, LEE J, et al. 3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures[J]. International Journal of Computer Integrated Manufacturing, 2019: 1-11
[7] SANCHEZ-GONZALEZ P, DÍAZ-GUTIÉRREZ D, LEO T, et al. Toward digitalization of maritime transport?[J]. Sensors, 2019, 19(4): 926
[8] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9
TAO F, ZHANG M, CHENG JF, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9
[9] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10
LIU DT, GUO K, WANG BK, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10
[10] GLAESSGEN EH, STARGEL DS. The digital twin paradigm for future NASA and U.S. Air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, Hawaii, United States: 2012.
[11] TAO F, QI Q. Make more digital twins[J]. Nature, 2019, 573(7775): 490-491
[12] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768
ZHUANG C, LIU JH, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753-768
[13] 戴晟, 赵罡, 于勇, 等. 数字化产品定义发展趋势: 从样机到孪生[J]. 计算机辅助设计与图形学学报, 2018, 30(8): 1554-1562
DAI S, ZHAO G, YU Y, et al. Trend of digital product definition: from mock-up to twin[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(8): 1554-1562
[14] 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3): 385-392
LI X, LIU X, WAN XX. Overview of digital twins application and safe development[J]. Journal of System Simulation, 2019, 31(3): 385-392
[15] DIMOPOULOS G, GEORGOPOULOU C, STEFANATOS J. Advanced ship machinery modeling and simulation[G]//PAPANIKOLAOU Apostolos. A Holistic Approach to Ship Design: Volume 1: Optimisation of Ship Design and Operation for Life Cycle. Cham: Springer International Publishing, 2019: 433-464.
[16] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611
TAO F, CHENG Y, CHENG JF, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611
[17] DANIELSEN-HACES A. Digital twin development-condition monitoring and simulation comparison for the revolt autonomous model ship[D]. Norwegian University of Science and Technology, 2018.
[18] LUDVIGSEN KB. Digital twins for blue denmark[R]. 2018-0006, Danish Maritime Authority, 2018.
[19] 黄永军, 王闰成, 马枫. “云上港航”数字孪生系统助航解决方案[J]. 信息技术与信息化, 2018(12): 67-70
HUANG YJ, WANG RC, MA F. Port shipping on cloud a solution from digital twin system[J]. Information Technology and Informatization, 2018(12): 67-70
[20] 徐鹏, 陈卫彬, 廖良闯, 等. 基于数字孪生的船舶管加工数字化车间研究[J]. 舰船科学技术, 2019, 41(15): 139-144
XU P, CHEN WB, LIAO LC, et al. Research on digital workshop of ship pipe machining based on digital twin[J]. Ship Science and Technology, 2019, 41(15): 139-144
[21] 刘志强. 领略数字造船的“魔力”[N]. 人民日报, 2018-7-9(19).
[22] LUDVIGSEN KB, JAMT LK, HUSTELI N, et al. Digital twins for design, testing and verification throughout a vessel’s life cycle[C]//Proc. 15th International Conference on Computer and IT Applications in the Maritime Industries. 2016: 448-456.
[23] RIVAS ÁR. Navantia’s Shipyard 4.0 model overview[J]. Ship Science and Technology, 2018, 11(22): 77-85
[24] 李佳师. 从精益制造样板到智能制造样板, 南通中远海运川崎是如何做到的?[N]. 中国电子报, 2018-07-26.
[25] QI Q, TAO F, ZUO Y, et al. Digital twin service towards smart manufacturing[J]. Procedia CIRP, 2018, 72(1): 237-242
[26] DUFOUR C, SOGHOMONIAN Z, LI W. Hardware-in-the-loop testing of modern on-board power systems using digital twins[C]//2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 2018: 118-123.
[27] HETHERINGTON C, FLIN R, MEARNS K. Safety in shipping: The human element[J]. Journal of Safety Research, 2006, 37(4): 401-411
[28] ELLEFSEN AL, ?SØY V, USHAKOV S, et al. A comprehensive survey of prognostics and health management based on deep learning for autonomous ships[J]. IEEE Transactions on Reliability, 2019, 68(2): 720-740
[29] Wärtsilä Corporation Annual Report 2018[R]. Wärtsilä, 2019.
[30] KNUTSEN KE, MANNO G, VARTDAL BJ. Beyond condition monitoring in the maritime industry[R]. Høvik, Norway: DNV GL Strategic Research & Innovation, 2014.
[31] NICULITA O, NWORA O, SKAF Z. Towards design of prognostics and health management solutions for maritime assets[J]. Procedia CIRP, 2017, 59: 122-132