随着载人潜水器下潜深度的增加,现有的钛合金材料已不能满足耐压壳结构的设计要求,因此,针对新型钛合金力学性能和疲劳性能研究尤其重要。本文对新型钛合金材料室温下的力学性能、断裂韧性、不同载荷比以及不同温度下的疲劳裂纹扩展行为开展试验研究,并将新钛合金材料的试验结果与其他钛合金疲劳裂纹扩展行为进行对比分析。研究结果表明,新型钛合金材料的断裂韧性明显高于其他几种钛合金材料,载荷比R对新型钛合金的疲劳裂纹扩展速率影响明显,低温环境下新型钛合金疲劳裂纹扩展的抵抗能力得到加强。相比其他钛合金材料,新型钛合金材料抗疲劳性能较优,因此新型钛合金材料具有更广泛的应用前景。
With the increase of the submersible depth of the manned submersible, the existing titanium alloy material can not meet the requirements of the design of the pressure-resistant shell structure. Therefore, it is especially important to study the mechanical properties and fatigue properties of the new titanium alloy. In this paper, the experimental study on the mechanical properties, fracture toughness, different load ratios and fatigue crack propagation behavior of new titanium alloy materials at room temperature is carried out, and the test results of new titanium alloy materials and fatigue crack growth behavior of other titanium alloys are carried out. Comparative analysis. The results show that the fracture toughness of the new titanium alloy is significantly higher than that of other titanium alloys; the load ratio R has a significant effect on the fatigue crack growth rate of the new titanium alloy; the resistance to fatigue crack growth of the new titanium alloy in low temperature environment is obtained. The new titanium alloy material has better fatigue resistance than other titanium alloy materials, so the new titanium alloy material has wider application prospects.
2020,42(11): 9-12 收稿日期:2019-11-12
DOI:10.3404/j.issn.1672-7649.2020.11.002
分类号:U664.1
基金项目:国家重点研发计划(2016YFCO300603-02);国家自然科学基金资助项目(51709134);江苏省自然科学基金资助项目(BK20160559)
作者简介:王珂(1981-),女,副教授,研究方向为船舶与海洋结构物安全性。
参考文献:
[1] 赵羿羽, 曾晓光, 郎舒妍. 深海载人潜水器技术动向[J]. 中国船检, 2016(11): 94-97
[2] 刘田玉. 基于失效模式相关性的船体耐压壳体可靠性分析[J]. 广州航海学院学报, 2019, 27(2): 38-41
[3] 胡珊珊. 基于疲劳寿命的深海载人潜水器耐压壳结构优化研究[D]. 厦门: 集美大学, 2019.
[4] 商国强, 王新南, 费跃, 等. 新型低成本钛合金高周疲劳性能和断裂韧度[J]. 失效分析与预防, 2013, 8(2): 74-78+106
SHANG Guoqiang, WANG Xinnan, FEI Yue, et al. High cycle fatigue properties and fracture toughness of new low cost titanium alloys[J]. Failure Analysis and Prevention, 2013, 8(2): 74-78+106
[5] 李永正, 卞超, 王珂, 等. 海洋结构物用钛合金Ti-6AL-4V保载——疲劳试验研究(英文)[J]. 船舶力学, 2018, 22(9): 1124-1135
LI Yongzheng, YAN Chao, WANG Wei, et al. Titanium alloy Ti-6AL-4V for marine structures - fatigue test study (English)[J]. Ship Mechanics, 2018, 22(9): 1124-1135
[6] 杜舜尧. 新型钛合金加工表面完整性与疲劳性能研究[D]. 南京: 南京航空航天大学, 2017.
[7] 季英萍, 吴素君. 应力比对Ti-6Al-2Zr-1Mo-1V合金疲劳裂纹扩展行为的影响[J]. 航空材料学报, 2018, 38(3): 72-76
[8] 许飞, 周善林, 石科学. 应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响[J]. 热加工工艺, 2010, 39(20): 33-35
[9] 吉楠, 卫遵义, 白小亮, 等. TC11钛合金全范围疲劳裂纹扩展速率表征[J]. 理化检验(物理分册), 2016, 52(7): 439-442
JI Nan, WEI Zunyi, BAI Xiaoliang, et al. Characterization of fatigue crack growth rate of TC11 titanium alloy in full range[J]. Physical Testing and Qualification, 2016, 52(7): 439-442