船舶在航行过程中,船舶结构会受到各类复杂机械设备激励载荷作用,由于船用机械设备种类繁多,且运行方式各不相同,使得设备对于船舶结构的激励方式也不相同,根据设备振动机理,部分设备在运行过程中会产生不平衡激扰力或者不平衡激扰力矩。针对典型设备激励载荷作用下船舶结构振动声辐射问题,本文以船舶舱段结构基准模型为例,使用声固耦合法,从“设备-基座-船舶结构”系统耦合振动角度出发,以船舶结构辐射噪声为考核量,探究了舱段结构在设备不平衡激扰力、不平衡激扰力矩、不平衡激扰力与力矩联合作用等典型设备激励载荷作用下辐射噪声的影响变化。
During the voyage of the ship, the hull structure will be subjected to various types of complex mechanical equipment excitation loads. Due to the variety of marine mechanical equipment and the different modes of operation, the equipment has different excitation methods for the ship structure. According to the vibration mechanism of the equipment, Some equipment will produce unbalanced disturbance force or unbalanced disturbance torque during operation. Aiming at the problem of vibration and acoustic radiation of ship structure under the excitation load of typical equipment, this article takes the ship cabin structure reference model as an example, uses the acoustic-solid coupling method, from the perspective of coupling vibration of the equipment-base-hull structure system, and takes the hull structure Radiation noise is the assessment quantity, and the influence of the radiation noise of the cabin structure under the typical equipment excitation load such as equipment unbalanced disturbance force, unbalanced disturbance torque, unbalanced disturbance force and moment combined action is explored.
2020,42(11): 24-29 收稿日期:2020-06-29
DOI:10.3404/j.issn.1672-7649.2020.11.005
分类号:U661.32
基金项目:国家重点研发计划(2016YFC0303406);山东省重点研发计划(2019JZZY010125);中央高校基本科研业务费资助项目(HEUCFD1515,HEUCFM170113);总装预研基金资助项目(6140210020105);船舶振动噪声重点实验室基金资助项目(6142204190207);中国博士后基金资助项目(2014M552661);国家自然科学基金资助项目(51209052,51679053,51709063);哈尔滨工程大学博士研究生科研创新基金资助项目(HEUGIP201902)
作者简介:宋超(1983-),男,工程师,主要研究方向为舰船总体
参考文献:
[1] 孙增华, 王丹, 于洋, 等. 船舶舱室噪声的工程预报方法[J]. 船舶工程, 2014(S1): 246-251
[2] 钱江, 李楠, 史文强. 复合材料在国外海军舰船上层建筑上的应用与发展[J]. 舰船科学技术, 2015(1): 233-237
[3] 吴刚. 海洋工程结构振动与声学特性计算[D]. 上海: 上海交通大学, 2008.
[4] 魏来. 基于台架试验的实船设备激励载荷计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[5] 黎胜. 结构振动声辐射的数值分析方法和优化设计研究进展[C]. 船舶水下噪声学术讨论会. 2015.
[6] 俞孟萨, 吴有生. 舰船声弹性及声辐射理论研究概述[J]. 船舶力学, 2008, 12(4): 669-676
[7] 何祚镛. 水下噪声及其控制技术进展和展望[J]. 应用声学, 2002, 21(1): 26-34
[8] VERHEIJ J W. Acoustic modeling of machinery excitation[J]. Inter Sym. Shipboard Acoustics 76’Proceeding[C]. Ed by Janssen JH, 1976.
[9] STEENHOCK H F. The riciprocal measurement of mechanical-acoustic transfer function[J]. Acoustica, 1970, 23: 301
[10] JANSSEN M H A. The use of an equivalent forces method for the experimental quantification of structural sound transmission in ship[J]. Journal of Sound and Vibration, 1999, 226(2): 305-328
[11] GOYDER HGD, WHITE RG. Vibrational power flow from machines into built2up structures Part3: Power flow through isolation systems[J]. Journal of Sound and Vibration, 1980, 68(1): 97-117
[12] PETERSON B, PLUNT J. On effective mobilities in the prediction of structure borne-sound transmission between a source structure and a receiving structure, theoretical ground and basic experimental studies[J]. Journal of Sound and Vibration, 1982, 82(4): 517-529
[13] 王振鸿, 机械噪声控制技术—机械阻抗与能量传递[R]. 中国船舶科学研究中心科技报告, 1997.
[14] 俄罗斯联邦克雷洛夫中央科学研究院. 船舶声学特性的物理基础[R], 2001.
[15] 马建强, 贾地, 王雪仁, 等. 基座阻抗均匀化对加筋柱壳水下辐射噪声的影响[J]. 噪声与振动控制, 2017, 37(1): 98-102
[16] 季文美, 方同, 陈松淇. 机械振动[M]. 北京: 科学技术出版社, 1985.