随着深海能源的开发,深海更加恶劣的环境使海上作业窗口期缩短,主动式升沉补偿装置可以有效解决深海作业窗口期短的问题,保障深海作业的安全,提高深海作业的效率,具有很高的经济价值。本文介绍主动式升沉补偿系统的组成及工作原理,总结主动式升沉补偿系统的响应滞后、参数时变、随机性、非线性4个技术难点,分析目前的研究思路,指出优点及其不足之处,并根据工业需求提出技术发展趋势。
With exploitation of deep-sea energy, harsh environment of the deep-sea shortens the weather window period of offshore operations. Active heave compensation system can effectively solve this problem, which ensures operation safety and improves operation efficiency to obtain higher economic benefit. This paper introduces the composition and working principle of the active heave compensation system. The technical challenges for development of the active heave compensation system are summarized including response lag, parameter time-varying, stochastic and nonlinear properties. The solutions to these challenges are analyzed based on the existing research schemes from aspects of its advantages and disadvantages. The state of the art of active heave compensation products are summarized. The development trends of active heave compensation are suggested according to the technical requirements.
2020,42(11): 76-82 收稿日期:2019-11-18
DOI:10.3404/j.issn.1672-7649.2020.11.016
分类号:TE951
作者简介:段玉响(1996-),男,硕士研究生,主要从事升沉补偿控制系统研究
参考文献:
[1] 何琦, 汪鹏. 深海能源开发现状和前景研究[J]. 海洋开发与管理, 2017, 34(12): 66-71
[2] 亢峻星. 海洋石油钻井与升沉补偿装置 [M]. 北京: 海洋出版社, 2017.
[3] 宁献良. 船用起重机主动式波浪补偿系统关键技术研究 [D]·哈尔滨:哈尔滨工程大学, 2017.
[4] 周利, 王磊, 陈恒. 动力定位控制系统研究[J]. 船海工程, 2008(2): 86-91
[5] 王建彪, 张恭. 海上风电场运维设备发展概述[J]. 广东造船, 2017, 36(5): 81-3
[6] 王哲骏, 谢金辉, 高剑, 等. 波浪补偿技术现状和发展趋势[J]. 舰船科学技术, 2014, 36(11): 1-7
[7] FERYD. HeaveCompensation[EB/OL]. http://everything2.com/title/Heave%2520.compensation. 2002-04-08.
[8] KORDE U A. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engineering, 1998, 25(7): 541-61
[9] ROBICHAUX L R, HATLESKOG J T. Semi-active heave compensation system for marine vessels [M]. Google Patents. 1993.
[10] 陈祖波, 吕岩, 李志刚, 等. 浮式钻井钻柱升沉补偿概述[J]. 石油矿场机械, 2011, 40(10): 28-33
[11] 肖体兵. 深海采矿装置智能升沉补偿系统的研究 [D]·广州:广东工业大学, 2004.
[12] 董睿. 主动式波浪补偿控制系统设计关键技术研究 [D]·长沙:国防科学技术大学, 2009.
[13] 邱显焱, 刘少军, 朱浩, 等. 深海采矿升沉补偿系统的自调整模糊控制仿真[J]. 中南大学学报(自然科学版), 2006, 37(4): 753-8
[14] 刘贤胜. 船用起重机主动升沉补偿控制系统研究 [D]·哈尔滨:哈尔滨工程大学, 2016.
[15] 卢京潮. 自动控制原理 [M]. 西北工业大学出版社, 2009.
[16] 何平. 主动式波浪补偿控制系统研究 [D]·长沙:国防科学技术大学, 2007.
[17] 张兴茂. 主动式波浪补偿系统时滞行为控制技术研究 [D]·长沙:国防科学技术大学, 2010.
[18] FLECK J T. Short Time Prediction of the Motion of a ship in waves; proceedings of the Proc Ist Conf On Ships and Waves, F, 1954 [C].
[19] 谢美萍, 沈艳, 彭秀艳, 等. 舰船运动的一种改进经典谱估计方法[J]. 船舶工程, 2000(04): 6-8+16-4
[20] KHAN A, BIL C, MARION K E. Theory and application of artificial neural networks for the real time prediction of ship motion; proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, F, 2005 [C]. Springer.
[21] KAPLAN P. A study of prediction techniques for aircraft carrier motions at sea[J]. Journal of Hydronautics, 1969, 3(3): 121-31
[22] 马洁, 韩蕴韬, 李国斌. 基于自回归模型的船舶姿态运动预报[J]. 舰船科学技术, 2006(3): 28-30
[23] 王允峰. 船舶纵横摇和升沉运动预报方法研究 [D]; 哈尔滨:哈尔滨工程大学, 2010.
[24] 曾智刚. 波浪运动升沉补偿液压平台关键问题试验研究 [D]; 广州:华南理工大学, 2010.
[25] 李国勇 杨丽娟. 神经·模糊·预测控制及其MATLAB实现. 第 3版 [M]. 北京:电子工业出版社, 2013.
[26] 刘金琨. 先进PID控制MATLAB仿真 [M]. 2004.
[27] 徐小军, 陈循, 尚建忠, 等. 单神经元PID的波浪补偿系统自适应控制与仿真[J]. 机械与电子, 2009(08): 61-4
[28] 李卫华. 深海采矿升沉运动补偿神经网络参数自适应控制研究 [D]; 广州:广东工业大学, 2011.
[29] 叶建. 船舶吊装补给主动式升沉补偿系统控制策略研究 [D]·武汉:武汉理工大学, 2013.
[30] 陈琦, 李格伦, 李智刚. 用于船舶升沉运动估算的自适应数字滤波器[J]. 中国惯性技术学报, 2018, 26(4): 421-7
[31] GODHAVEN J-M. Adaptive tuning of heave filter in motion sensor; proceedings of the IEEE Oceanic Engineering Society OCEANS'98 Conference Proceedings (Cat No 98CH36259), F, 1998 [C]. IEEE.
[32] RICHTER M, SCHNEIDER K, WALSER D, et al. Real-time heave motion estimation using adaptive filtering techniques[J]. IFAC Proceedings Volumes, 2014, 47(3): 10119-25
[33] XIANLIANG N, JIAWEN Z, JIANAN X. The heave motion estimation for active heave compensation system in offshore crane; proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, F, 2016 [C]. IEEE.
[34] 魏素芬, 杨文林, 张竺英. 液压绞车主动升沉补偿控制研究[J]. 液压与气动, 2009(7): 27-9
[35] WOODACRE J, BAUER R, IRANI R. A review of vertical motion heave compensation systems[J]. Ocean Engineering, 2015, 104: 140-54
[36] 席裕庚. 预测控制 [M]. 北京:国防科技图书出版社, 1991.
[37] WOODACRE J, BAUER R, IRANI R. Hydraulic valve-based active-heave compensation using a model-predictive controller with non-linear valve compensations[J]. Ocean Engineering, 2018, 152: 47-56
[38] WOODACRE J. Model-predictive control of a hydraulic active heave compensation system with heave prediction [D], 2015.
[39] SANNER R M, SLOTINE J-J E. Gaussian networks for direct adaptive control; proceedings of the 1991 American Control Conference, F, 1991 [C]. IEEE.
[40] UCHIYAMA M. Formation of high-speed motion pattern of a mechanical arm by trial[J]. Transactions of the Society of Instrument and Control Engineers, 1978, 14(6): 706-12
[41] ARIMOTO S, KAWAMURA S, MIYAZAKI F. Bettering operation of robots by learning[J]. Journal of Robotic systems, 1984, 1(2): 123-40