本文在现有浮式风机和波浪能浮子装置的基础上设计一种浮式风浪能混合利用系统,该系统可共用一个半潜浮式平台及输电系统;风能发电装置采用水平轴风力发电机,波浪能发电装置采用一种倒圆台形的振荡浮子。对该系统的稳性进行校核,结果表明,该混合利用系统的稳定性满足DNV对浮式风机稳性的相关要求,且波浪能浮子的加入提高了整体的稳定性;同时,基于势流理论,使用水动力分析软件Sesam中的HydroD模块对平台进行频域特性分析,得到其六自由度运动幅频响应算子(RAO),通过六自由度运动对比,波浪能浮子的加入有效地抑制了较长周期波浪对于系统平台的影响;同时相对单独的风机或者波浪能浮子,可提高能量吸收效率。
Based on the existing floating fan and wave energy float device, this paper designs a floating wind wave energy hybrid utilization system, which can share a semi submersible floating platform and transmission system. The wind power generation device adopts horizontal axis wind turbine, and the wave energy generation device adopts an inverted circular oscillating float. The stability of the system is checked, and the results show that the stability of the hybrid system meets the requirements of DNV for the stability of the floating fan, and the addition of wave energy float improves the overall stability. At the same time, based on the potential flow theory, the HydroD module of Sesam is used to analyze the frequency domain characteristics of the platform, and the amplitude frequency response operator of six degree of freedom motion (RAO) are obtained. Through the six degree of freedom motion comparison, the wave energy floater can effectively restrain the influence of long-term wave on the system platform. Meanwhile, compared with the separate fan or wave energy floater, it can improve the energy absorption efficiency.
2020,42(11): 83-90 收稿日期:2019-11-15
DOI:10.3404/j.issn.1672-7649.2020.11.017
分类号:P752
作者简介:陈淑玲(1995-),女,博士,副教授,研究方向为船舶与海洋结构物水动力性能
参考文献:
[1] HERONEMUS W E. Pollution-free energy from the offshore winds[J]. Marine Technology Society, 1972: 102-123.
[2] 王彪, 毕涛, 肖志颖. 海上浮式风机基础设计综述[J]. 电力勘测设计, 2018(09): 52-57
WANG Biao, BI Tao, XIAO Zhiying. Summary of foundation design for offshore floating wind turbine[J]. Magazine Office of Electric Power Survey & Design, 2018(09): 52-57
[3] 杨绍辉, 何宏舟, 李晖, 等. 点吸收式波浪能发电技术的研究现状与展望[J]. 海洋技术学报, 2016, 35(03): 8-16
YANG Shaohui, HE Hongzhou, LI Hui, et al. Research status and prospect of point absorber wave power generation technology[J]. Journal of Marine Technology, 2016, 35(03): 8-16
[4] AUBAULT A., ALVES M., SARMENTO A., et al. Modeling of an oscillating water column on the floating foundation windfloat[C]// ASME 2011 International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 2011: 235-246.
[5] PEIFFER A., RODDIER D., AUBAULT A. Design of a point absorber inside the windfloat structure[C]// ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 2011: 247-256.
[6] SOULARD T., BABARIT A. Numerical assessment of the mean power production of a combined wind and wave energy platform[C]. ASME 2012 International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 2012: 413-423.
[7] MICHAILIDES C., GAO Z., MOAN T. A sensitivity study of wave and wind induced responses of the combined energy concept Sfc based on experimental measurements[C]// Proceedings of the 26th International Offshore and Polar Engineering Conference, Rhodes, Greece, 2016.
[8] 邓慧静. 海上浮式风机平台稳性及锚泊系统性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[9] PRADO M. Archimedes wave swing(AWS). In: CruzJ. edg. Ocean wave energy. Berlin: Springer, 2008, 297-304.
[10] 盛振邦. 船舶原理(上)[J]. 海洋工程装备与技术, 2015, 2(3): 174
Sheng Zhenbang. Ship principle (I)[J]. Offshore Engineering Equipment and Technology, 2015, 2(3): 174
[11] 海上移动平台入级与建造规范[S]. 中国船级社, 2005.
Rules for classification and construction of offshore mobile platforms[S]. China Classification Society, 2005.
[12] 王淇. 一种新型浮式风浪能混合利用系统概念设计与性能分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[13] 彭建军. 振荡浮子式波浪能发电装置水动力性能研究[D]. 济南: 山东大学, 2014.