自二战以来水锤效应问题就引起了西方国家的重视,涉及面覆盖航天、兵器、船舶等多个领域。高速弹体侵彻充液结构时会产生水锤效应,其破坏机制是冲击波载荷和空腔膨胀引起的液体流作用于结构壁面,导致充液结构发生严重的损伤破坏。关于水锤效应的作用机理已开展了广泛的研究,对其引起的结构破坏特性的研究及相关的防护技术同样是国内外学者关注的热点。本文重点给出高速弹体侵彻下充液结构受到的载荷特性以及相应的变形破坏特性的研究进展,同时对现有的各种关于水锤效应衰减防护技术进行详细的阐述和讨论。最后指出高速弹体侵彻下产生的水锤效应研究仍存在的问题和未来研究方向。
Since the Second World War, problems of hydrodynamic ram have attracted the attention of western countries, covering many fields such as aerospace, weapons and ships. Hydrodynamic ram occurs when a high-speed projectile penetrates a liquid-filled structure. The damage mechanism is that a pressure wave and liquid flow caused by a cavity expansion act on structure walls, resulting in a catastrophic failure of the liquid-filled structure. Extensive researches have been conducted on the mechanism of action of hydrodynamic ram. Researches on the structural failure characteristics caused by it and protection technologies are also the focus. In this paper, reviews of study on load characteristics and corresponding deformation and failure characteristics were given. At the same time, various existing protection technologies attenuating the hydrodynamic ram were discussed in detail. Finally, some suggestions were provided for the future research directions of the hydrodynamic ram.
2021,43(1): 1-10 收稿日期:2020-07-30
DOI:10.3404/j.issn.1672-7649.2021.01.001
分类号:O344.7
基金项目:国家自然科学基金资助项目(51979277)
作者简介:高圣智(1996-),男,硕士研究生,研究方向为舰船抗爆冲击
参考文献:
[1] LECYSYN N, AURÉLIA Dandrieux, FRÉDÉRIC Heymes, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2-3): 587-594
[2] LECYSYN N, AURÉLIA Bony-Dandrieux, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1-3): 635-643
[3] DISIMILE P J, TOY N, SWANSON L. A large-scale shadowgraph technique applied to hydrodynamic ram[J]. Journal of Flow Visualization and Image Processing, 2009, 16(4): 303-332
[4] 白强本, 李向东, 贾飞, 等. 高速破片撞击飞机油箱的数值模拟研究[J]. 兵工自动化, 2014, 33(1): 35-38
BAI Qiang-ben, LI Xiang-dong, JIA Fei, et al. Numerical simulation on high-speed fragment impact against an aircraft fuel tank[J]. Ordnance Industry Automation, 2014, 33(1): 35-38
[5] ADDESSIO, F L, Schraad, et al. Physics-based damage predictions for simulating testing and evaluation experiments. LA-UR-97-4877. Los Alamos National Laboratory; 1997.
[6] BIRKHOFF G, ZARANTONELLO E H. Jets, wakes, and cavities[M]. New York: Academic Press, 1957.
[7] BURT F S. Hydrodynamic research[J]. British Journal of Applied Physics, 1961, 12(7): 323-328
[8] MORSE C R, STEPKA F S. Effect of projectile size and material on impact fracture of walls of liquid-filled tanks: NASA-TN-D-3627[R]. Cleveland: NASA Lewis Research Center, 1966.
[9] 刘国繁, 陈照峰, 王永健, 等. 飞机油箱水锤效应研究方法及进展[J]. 航空工程进展, 2014, 5(1): 1-6, 24
LIU Guo-fan, CHEN Zhao-feng, WANG Yong-jian, et al. Research methods and progress of the hydrodynamic ram effect of aircraft fuel tanks[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1): 1-6, 24
[10] 纪杨子燚, 李向东, 周兰伟, 等. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展[J]. 振动与冲击, 2019, 38(19): 242-252
JI Yang-ziyi, LI Xiang-dong, ZHOU Lan-wei, et al. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container[J]. Journal of Vibration and Shock, 2019, 38(19): 242-252
[11] JIN J, HOU H, CHEN P, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments[J]. International Journal of Impact Engineering, 2019, 130(AUG.): 19-26
[12] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究[J]. 爆炸与冲击, 2004(2): 133-139
ZHU Xi, ZHANG Zhen-hua, LIU Run-quan, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock Waves, 2004(2): 133-139
[13] 徐定海, 盖京波, 王善, 等. 防护模型在接触爆炸作用下的破坏[J]. 爆炸与冲击, 2008, 28(5): 476-480
XU Ding-hai, GAI Jing-bo, WANG Shan, et al. Deformation and failure of layered defense models subjected to contact explosive load[J]. Explosion and Shock Waves, 2008, 28(5): 476-480
[14] 姚熊亮. 舰船结构振动冲击与噪声[M]. 北京: 国防工业出版社, 2007.
[15] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2-3): 61-72
[16] 仲强, 侯海量, 李典. 陶瓷/液舱复合结构抗侵彻机理试验研究[J]. 船舶力学, 2017, 21(10): 1282-1290
ZHONG Qiang, HOU Hai-liang, LI Dian. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure[J]. Journal of Ship Mechanics, 2017, 21(10): 1282-1290
[17] DAVID Townsend, NICK Park, PETER M. Devall Failure of fluid dilled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1)
[18] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International journal of impact engineering, 2009, 36(6): 821-829
[19] ARTERO-GUERRERO J A, VARAS D, PERNAS-SANCHEZ J, et al. Experimental analysis of an attenuation method for hydrodynamic ram effects[J]. Materials & Design, 2018, 155(OCT.): 451-462
[20] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下充液结构耗能机理数值分析[J]. 海军工程大学学报, 2018, 30(2): 60-65
LI Dian, HOU Hai-liang, ZHU Xi, et al. Numerical analysis of energy dissipation mechanism of liquid-filled structure subjected to high velocity rod projectile penetration[J]. Journal of Naval University of Engineering, 2018, 30(2): 60-65
[21] 纪杨子燚, 李向东, 周兰伟, 等. 高速破片撞击充液容器形成液压水锤的试验研究[J]. 国防科技大学学报, 2019, 41(3): 70-76
JI Yang-ziyi, LI Xiang-dong, ZHOU Lan-wei, et al. Experimental study on hydrodynamic ram generated by high velocity fragment impacting fluid-filled container[J]. Journal of National University of Defense Technology, 2019, 41(3): 70-76
[22] MCMILLEN, Howard J. Shock wave pressures in water produced by impact of small spheres[J]. Physical Review, 1945, 68(9-10): 198-209
[23] MCMILLEN J H, HARVEY E N. A spark shadow graphic study of body waves in water[J]. Journal of Applied Physics, 1946, 17(7): 541-555
[24] CHOU P C, SCHALLER R, HOBURG J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles[R]. Washington, D C: National Aeronautics and Space Administration, 1967.
[25] HOPSON M V, TREADWAY S K. Testing and computational analysis of pressure transducers in water filled tank impacted by hypervelocity projectile[J]. International Journal of Impact Engineering, 2008, 35(12): p. 1593-1601
[26] 唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真[J]. 哈尔滨工程大学学报, 2012, 33(2): 142-149
TANG Ting, ZHU Xi, HOU Hai-liang, et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels[J]. Journal of Harbin Engineering University, 2012, 33(2): 142-149
[27] 张伟, 黄威, 任鹏, 等. 高速弹体水平入水产生冲击波特性[J]. 哈尔滨工业大学学报, 2016, 48(4): 37-41
ZHANG Wei, HUANG Wei, REN Peng, et al. The underwater shock wave characteristics caused by high speed horizontal water entry projectiles[J]. Jonrnal of Harbin Institute of Technology, 2016, 48(4): 37-41
[28] 李典, 朱锡, 侯海量, 等. 高速杆式弹侵彻下充液结构载荷特性有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1-8
LI Dian, ZHU Xi, HOU Hai-liang, et al. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1): 1-8
[29] VARAS D, ZAERA R, LOPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10)
[30] POWER H L. FY 74 experimental hydraulic ram studies[D]. Monterey, CA: Naval Postgraduate School, 1974.
[31] FUHS E A, BALL E R, POWER L H. FY 73 Hydraulic ram studies[D]. Monterey, CA: Naval Postgraduate School, 1973.
[32] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4): 395-400
XU Shuang-xi, WU Wei-guo, LI Xiao-bin, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J]. Explosion and Shock Waves, 2010, 30(4): 395-400
[33] 陈长海, 侯海量, 张元豪, 等. 破片高速侵彻中厚背水钢板的剩余特性[J]. 爆炸与冲击, 2017, 37(6): 959-965
CHEN Chang-hai, HOU Hai-liang, ZHANG Yuan-hao, et al. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion and Shock Waves, 2017, 37(6): 959-965
[34] 陈长海, 侯海量, 张元豪, 等. 中厚背水金属靶板抗钝头弹高速侵彻机制分析[J]. 上海交通大学学报, 2017, 51(12): 1428-1434
CHEN Chang-hai, HOU Hai-liang, ZHANG Yuan-hao, et al. Research on the mechanism of moderately thick water-backed metal plates penetrated by high-velocity blunt-nosed projectiles[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1428-1434
[35] ABRAHAM J, GORMAN J, RESEGHETTI F, et al. Modeling and numerical simulation of the forces acting on a sphere during early-water entry[J]. Ocean Engineering, 2014, 76(jan. 15): 1-9
[36] WANG Z, HUANG B, ZHANG M, et al. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics[J]. International Journal of Multiphase Flow, 2017: S0301932216304955
[37] 矶部孝, 周佩芬. 水下弹道的研究[M]. 北京: 国防工业出版社, 1983.
[38] 陈先富. 弹丸入水空穴的试验研究[J]. 爆炸与冲击, 1985(4): 72-75
CHEN Xian-fu. Experimental studies on the cavitation phenomena as a pellet entering water[J]. Explosion and Shock Waves, 1985(4): 72-75
[39] 顾建农, 张志宏, 范武杰. 旋转弹丸入水侵彻规律[J]. 爆炸与冲击, 2005(4): 341-349
GU Jian-nong, ZHANG Zhi-hong, FAN Wu-jie. Experimental study on the penetration law for a rotating pellet entering water[J]. Explosion and Shock Waves, 2005(4): 341-349
[40] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31(6): 579-584
ZHANG Wei, GUO Zi-tao, XIAO Xin-ke, et al. Experimental investigations on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6): 579-584
[41] GUO Z, ZHANG W, XIAO X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49: 43-60
[42] 沈晓乐, 朱锡, 侯海量, 等. 高速破片入水墩粗变形及侵彻特性有限元分析[J]. 舰船科学技术, 2012, 34(7): 25-29
SHEN Xiao-le, ZHU Xi, HOU Hai-liang, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J]. Ship Science and Technology, 2012, 34(7): 25-29
[43] 李海涛, 朱锡, 黄晓明, 等. 水下爆炸冲击波作用下空化区域形成的特性研究[J]. 高压物理学报, 2008(2): 181-186
LI Hai-tao, ZHU Xi, HUANG Xiao-ming, et al. On the characteristics of cavitation formation subjected to underwater blast shock wave[J]. Chinese Journal of High Pressure Physics, 2008(2): 181-186
[44] 吴林杰, 侯海量, 朱锡. 高速破片侵彻下防护液舱后板的载荷特性数值分析[J]. 舰船科学技术, 2018, 40(7): 1-5
WU Lin-jie, HOU Guang-ming, ZHU Xi. Numerical analysis on load characteristic of guarding liquid cabin’s back plate under high velocity fragment impact[J]. Ship Science and Technology, 2018, 40(7): 1-5
[45] VARAS D, LOPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA Journal, 2012, 50(7): 1621-1630
[46] 仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析[J]. 爆炸与冲击, 2017, 37(3): 510-519
ZHONG Qiang, HOU Hai-liang, ZHU Xi, et al. Numerical analysis of penetration resistance of ceramic /fluid cabin composite structure[J]. Explosion and Shock Waves, 2017, 37(3): 510-519
[47] 李典, 朱锡, 侯海量. 高速杆式弹侵彻下蓄水结构防护效能数值分析[J]. 海军工程大学学报, 2015, 27(4): 21-25
LI Dian, ZHU Xi, HOU Hai-liang. Numerical analysis of protective efficacy of water-filled structure subjected to high velocity long-rod projectile penetration[J]. Journal of Naval University of Engineering, 2015, 27(4): 21-25
[48] 吴晓光, 李典, 吴国民, 等. 高速杆式弹侵彻下充液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76-84
WU Xiao-guang, LI Dian, WU Guo-min, et al. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile[J]. Explosion and Shock Waves, 2018, 38(1): 76-84
[49] 刘雨曦, 任鹏, 拾路. 弹体低速撞击下充液结构毁伤特性研究[J]. 振动与冲击, 2018, 37(15): 84-89
LIU Yu-xi, REN Peng, SHI Lu. Damage characteristics of liquid-filled tanks impacted by low speed projectiles[J]. Journal of Vibration and Shock, 2018, 37(15): 84-89
[50] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析[J]. 国防科技大学学报, 2019, 41(2): 166-172
JIN Jian, HOU Hai-liang, WU Fan, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion[J]. Journal of National University of Defense Technology, 2019, 41(2): 166-172
[51] 李营, 赵鹏铎, 张春辉, 等. 空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响[J]. 振动与冲击, 2018, 37(3): 186-194
LI Ying, ZHAO Peng-duo, ZHANG Chun-hui, et al. Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration[J]. Journal of Vibration and Shock, 2018, 37(3): 186-194
[52] 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018, 38(3): 473-484
HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to highvelocity multi-fragment impact[J]. Explosion and Shock Waves, 2018, 38(3): 473-484
[53] VARAS D, LOPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1)
[54] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12): p. 2000-2016
[55] REN P, ZHOU J, TIAN A, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact[J]. International Journal of Impact Engineering, 2018, 117(JUL.): 153-163
[56] 陈照峰, 刘国繁, 高伟, 等. 高速子弹穿透充液油箱的数值模拟[J]. 航空计算技术, 2014, 44(1): 98-101
CHEN Zhao-feng, LIU Guo-fan, GAO Wei, et al. Numerical simulation of filled fuel tank submitted high-speed bullet penetrated[J]. Aeronautical Computing Technique, 2014, 44(1): 98-101
[57] 陈亮, 宋笔锋, 裴扬, 等. 威胁打击方向对飞机油箱液压冲击易损性的影响分析[J]. 机械强度, 2012, 34(6): 807-811
CHEN Liang, SONG Bi-feng, PEI Yang, et al. Impact analysis of threat directions to hydrodynamic ram vulnerability of aircraft fuel tank[J]. Journal of Mechanical Strength, 2012, 34(6): 807-811
[58] 杨砚世, 肖志华, 李向东. 破片撞击燃料箱时水锤效应的数值仿真研究[J]. 爆破器材, 2014, 43(4): 26-31
YANG Yan-shi, XIAO Zhi-hua, LI Xiang-dong. Numerical simulation study on hydrodynamic ram due to the penetration of fuel tank by high energy fragments[J]. Explosive Materials, 2014, 43(4): 26-31
[59] 孔祥韶, 吴卫国, 李俊, 等. 爆炸破片对防护液舱的穿透效应[J]. 爆炸与冲击, 2013, 33(5): 471-478
KONG Xiang-shao, WU Wei-guo, LI Jun, et al. Effects of explosion fragments penetrating defensive liquid-filled cabins[J]. Explosion and Shock Waves, 2013, 33(5): 471-478
[60] 蓝肖颖, 李向东, 周兰伟, 等. 双破片撞击充液容器时液体内压力分布研究[J]. 振动与冲击, 2019, 38(19): 191-197
LAN Xiao-ying, LI Xiang-dong, ZHOU Lan-wei, et al. Pressure distribution inside liquid during a liquid-filled vessel impacted by double-fragment[J]. Journal of Vibration and Shock, 2019, 38(19): 191-197
[61] LECYSYN N, AURÉLIA Dandrieux, FRÉDÉRIC Heymes, et al. Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6): 627-634
[62] 孔祥韶, 王旭阳, 徐敬博, 等. 复合防护液舱抗爆效能对比试验研究[J]. 兵工学报, 2018, 39(12): 152-163
KONG Xiang-shao, WANG Xu-yang, XU Jing-bo, et al. Comparative experimental study of anti-explosion performance of compound protective liquid cabin[J]. ACTA ARMAMENTARII, 2018, 39(12): 152-163
[63] 蔡斯渊, 侯海量, 吴林杰. 隔层设置对防雷舱液舱防护能力的影响[J]. 哈尔滨工程大学学报, 2016, 37(4): 527-532
CAI Si-yuan, HOU Hai-liang, WU Lin-jie. Influence of installed interlayers on defensive efficiency of a warship’s liquid cabin[J]. Journal of Harbin Engineering University, 2016, 37(4): 527-532
[64] 侯海量, 金键, 李永清, 等. 舰用泄压型防护液舱结构[P]. CN209290647U, 2019.8.23.